1-877-7RADPAD     info@radpad.com

Posts Under: Procedures

revascularization-of-limbs
RADPAD Presents: Using the Venous System to Re-Vascularize Limbs

RADPAD Presents: Using the Venous System to Re-Vascularize Limbs

Posted on October 4, 2017 by in Other Stories, Procedures with no comments

This is an extremely interesting article on using the venous system to re-vascularize “cold feet” and the challenges that come with the process. Saving limbs has become the rally cry for vascular surgeons around the world. They know that the patient’s chances for any long term success are tied to keeping their limbs.


Update on the Novel AV Reversal Therapy for End-Stage CLI

CLI Perspectives is headed by section editor J.A. Mustapha, MD, Metro Health Hospital, Wyoming, Michigan.

Dr. Mustapha interviews Steven Kum, MBBS, FRCS, Novena Vascular & Varicose Vein Centre, Mount Elizabeth Hospital; Director of Vascular Services, Department of Surgery, Changi General Hospital, Singapore.

 

Introduction

J.A. Mustapha, MD

End-stage critical limb ischemia (CLI) is what we refer to as patients who have had revascularization attempts and are still facing major amputation. These patients are also referred to as Rutherford 6. During recent presentations at the 2016 Amputation Prevention Symposium (AMP) and 2016 Vascular InterVentional Advances (VIVA) conferences, Dr. George Adams and Dr. Jihad Mustapha presented data from the LIBERTY trial that showed 78% of Rutherford 6 patient were discharged home within 27 hours after endovascular revascularization, without limb loss. Their 30-day follow-up visit showed a similar high number of patients with their target limb still intact. Is it time to reconsider the fate of patients with Rutherford 6 and consider drastic forms of revascularizations prior to major amputations? Dr. Steven Kum of Singapore believes that patients with end-stage disease can still benefit from a unique procedure called arterial venous flow reversal. Dr. Kum, a vascular surgeon, developed an endovascular procedure to not only create the fistula, but also allow the venous conduit to arterialize over time.

J.A. Mustapha, MD: Can you explain the arterial venous flow reversal (AVR) concept?

Steven Kum, MBBS: Thanks, Jihad, for the invitation to contribute. Well, essentially, if we have an arterial system that cannot be opened, we preferentially pressurize the venous system and route oxygenated blood flow through this system. It’s a little analogous to traffic between two cities. Should a freeway be unserviceable in one direction, we hop over to the other side of the road to take advantage of the undiseased path (i.e., the veins) to reach where we want to go. This flow is reversed not only in the major veins, but also the smaller veins in the foot.

Dr. Mustapha: Can you explain the physiological changes that happen and the time frames for the changes?

Dr. Kum: Flow reversal is not a new concept. It is still occasionally done in the coronary system during a coronary bypass when the surgeon has to perform retrograde perfusion. There have been many reports in the past of surgical venous arterialization and contemporary surgical series are encouraging. We are still trying to understand the physiological changes. Immediately after flow reversal, arterialization of the veins and pressurization of the venous system occurs. We believe that this pressurization leads to oxygenation of the capillary bed.

Dr. Mustapha: To date, how many cases have been performed at your center and how many do you predict have been performed worldwide?

Dr. Kum: We have performed just under 15 cases in our center, but I have been closely involved in several European centers with a U.S. feasibility trial starting soon this year. I anticipate that as we push beyond the extreme interventions that we are already now doing, we are in a sense victims of our own success and will see more of these patients with end-stage disease. Preventing amputations saves legs and lives, but together with better medical therapy, our patients are surviving longer and have more severe disease every time we re-intervene. This may offer a solution for the global CLI pandemic.

Dr. Mustapha: Can you describe the technical procedure and give an understanding of the end results?

Dr. Kum: We have started using the LimFlow system (LimFlow SA) to do percutaneous deep venous arterialization (DVA) for several years now. The AV flow reversal leads to DVA.

Essentially, after antegrade 7 French (F) access and retrograde 5F venous access under ultrasound guidance, we do a double injection angiogram of both the artery and the veins at the intended area of crossing between the artery and the vein (the “crossover point”). After sufficient pre-dilatation, a 7F catheter (the “A” catheter), housing an ultrasound-emitting crystal is introduced into the artery in an antegrade fashion and positioned adjacent to the crossover point. Similarly, a 5F venous catheter (the “V” catheter), housing an ultrasound-receiving crystal, is introduced via the retrograde 5F sheath and positioned adjacent to the “A” catheter. With the help of a computer system, the 2 catheters are aligned. A needle system moves between the artery and vein followed by a wire, creating the arteriovenous fistula (AVF).  The AVF is then ordinated and matured with a covered stent. Subsequent covered stents are used to serve as an endovenous conduit to drive a large volume of blood to the ankle. These covered stents serve to cover the numerous venous branches/collaterals that may “bleed off” the flow towards the heart rather than down to the foot. A key obstacle to the blood flowing to the foot is the valves in the foot. These impediments are, in my opinion, best addressed with a valve cutter. The team at LimFlow has designed a unique tool to address this issue percutaneously.

Dr. Mustapha: How do you determine if a patient is a good candidate for the procedure? 

Dr. Kum: We must remember that the patients we have selected are end-stage CLI patients. This implies that they have no reasonable endovascular or open surgical bypass options for revascularization. As peripheral arterial disease is a systemic disease, we would expect the same disease process in the other vascular beds.  Coupled with the advanced age of these patients, we could say these patients are fragile. Clinical selection of these patients relies heavily on good old clinical evaluation and some tests. In general, heart function should be more than 40%, and renal function reasonable. The extent of soft tissue loss and infection should not be too severe and we rely on the Society of Vascular Surgery Wound, Ischemia and foot Infection (WIfI) classification system to guide us on the suitability of these patients.

In addition, several other angiographic and sonographers criteria should be met.  The target vein for retrograde access should be greater than 3 mm in size, and the inflow artery just proximal to the crossing point should be greater than 3.5 mm in diameter, especially in calcified vessels. This means that aggressive pre dilatation of the inflow vessels is essential.

Dr. Mustapha: Have you considered performing the AVR procedure on patients with Rutherford 5?  

Dr. Kum: In our initial experience, we started treating end-stage patients as we deemed that these patients had no other alternative. As our technique and experience with the procedure has grown, we have started treating patients who are not end stage. A consideration would be to offer the procedure to someone who required a specific angiosome to be revascularized. Percutaneous DVA would be able to reperfuse the specific angiosome, sparing a non-contributory angiosome from potential restenosis. In my opinion, this holds promise, as we leave existing collateral circulation alone.

Dr. Mustapha: Do you follow a specific post-operative follow-up algorithm?  

Dr. Kum: Post procedure, we encourage the continuation of therapeutic anticoagulation for 48 hours. Closure devices are regularly employed post procedure to allow this. Intravenous antibiotics are continued as per institution protocol. In general, we err on the side of caution and prefer a longer course of intravenous antibiotics due to the large amount of covered stent implanted, especially if the foot wound is infected. In anticipation of foot swelling, which is a sign of successful venous perfusion, we elevate the foot for 48 hours and ambulate the patient thereafter.

Dr. Mustapha: What is your advice to operators who are considering doing arterial venous flow reversal in their institutions?

Dr. Kum: There is a learning curve and the LimFlow device makes it much simpler to perform. It is absolutely crucial that these centers have good wound care programs.  Venous arteriolization, in my opinion, is able to perfuse the foot. Wound care is somewhat different from a standard arterial revascularization (the details which cannot be covered here). As with all programs, a dedicated team will ensure that a good angiographic result translates to a good clinical result. This is especially true in percutaneous DVA.

Read the original interview:

http://www.cathlabdigest.com/article/Update-Novel-AV-Reversal-Therapy-End-Stage-CLI


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730 or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown
9100-in-use-thumb
RADPAD Interventional Cardiology News: the EARLY TAVR Trial

RADPAD Interventional Cardiology News: the EARLY TAVR Trial

Posted on July 21, 2017 by in Procedures with no comments

The following article from Diagnostic and Interventional Cardiology  offers interesting news about the EARLY TAVR trial, and insights from Philippe Genereux, M.D., interventional cardiologist and the trial’s lead investigator.

The EARLY TAVR trial’s purpose is to assess any health benefit from replacing the aortic valve through a minimally invasive, catheter-based procedure prior to patients showing symptoms, as opposed to the standard of care of observing patients until symptoms develop.

 

FEATURE | HEART VALVE TECHNOLOGY | JULY 14, 2017

First Patient in World Enrolled in Study Evaluating TAVR for Asymptomatic Severe Aortic Stenosis

Morristown Medical Center randomizes first patient in the EARLY TAVR trial, which may change treatment paradigm to save heart function, prevent deterioration

Edwards Sapien 3 TAVR valve will be implanted in asymptomatic aortic stenosis patients in the EARLY TAVR Trial

July 14, 2017 — Morristown Medical Center, part of Atlantic Health System, has randomized the first patient in the world to the EARLY TAVR (Evaluation of Transcatheter Aortic Valve Replacement Compared to SurveilLance for Patients With AsYmptomatic Severe Aortic Stenosis) trial.

Philippe Genereux, M.D., an interventional cardiologist and co-director of the Structural Heart Program at the Gagnon Cardiovascular Institute at Morristown Medical Center, serves as the trial’s principal (lead) investigator. The study is a U.S. Food and Drug Administration approved inventigational device exemption (IDE) trial.

Traditionally, patients with severe aortic stenosis (AS)—a narrowing of the aortic valve in the heart that keeps it from opening fully—who do not yet have symptoms (asymptomatic), are regularly followed and monitored by their cardiologist, and treatment is not initiated until they become symptomatic. However, many elderly patients with asymptomatic severe AS can develop irreversible heart damage or even die while waiting for symptoms to appear. The EARLY TAVR trial will evaluate whether there is benefit from replacing the aortic valve via a minimally invasive, catheter-based procedure (called a transcatheter aortic valve replacement) before patients develop symptoms (shortness of breath, dizziness, fainting, or angina) as compared to the standard of care of watching the patient until symptoms develop.

“The EARLY TAVR trial is an incredibly important trial for the more than 2.5 million people who suffer from aortic stenosis because it may provide an answer to the frequent dilemma cardiologists face about how they should treat severe aortic stenosis, even though patients have no symptoms,” Genereux explained. “The progression of aortic stenosis is unpredictable, and there may be a price to pay for waiting to treat—the goal of early intervention with valve replacement is to preserve the heart’s function, prevent further heart deterioration, and in some case, death.”

“As a nationally recognized leader in cardiology and cardiovascular surgery, Atlantic Health System is committed to both prolonging and improving the quality of life for patients with heart disease,” said Linda D. Gillam, M.D., MPH, The Dorothy and Lloyd Huck Chair of Cardiovascular Medicine at Morristown Medical Center/Atlantic Health System. “Our participation in clinical trials, like EARLY TAVR, not only ensures our patients have access to new treatments before they are approved or available to the general public, but helps our clinicians remain on the cutting edge of medicine with access to the latest medications, devices, and technology.”

 

About the EARLY TAVR Trial

Evaluation of Transcatheter Aortic Valve Replacement Compared to SurveilLance for Patients With AsYmptomatic Severe Aortic Stenosis (EARLY TAVR) is a randomized, controlled, multi-center clinical trial study. Patients aged 65 and older diagnosed with asymptomatic, severe aortic stenosis will be randomized to receive a transcatheter aortic valve replacement (TAVR) with the Edwards Sapien 3 heart valve, or standard of care clinical surveillance. The study will enroll 1,000 patients in 65 cardiovascular centers.

Patients will be randomized (TAVR or surveillance) based on their ability to perform a treadmill stress test, as well as other factors. Those patients with a positive treadmill stress test or who do not meet other factors for randomization may be followed in a registry for data collection on subsequent treatment and mortality, as applicable.

The EARLY TAVR trial is sponsored by Edwards Lifesciences. According to Edwards Lifesciences, global transcatheter heart valve therapy (THVT) sales rose 29 percent to $432 million in the past year. In the United States, sales grew by 38 percent. Edwards said cardiac surgeons and interventional cardiologists are now implanting the company’s Sapien 3 TAVR devices at more than 500 hospitals in the U.S.

For more information: www.atlantichealth.org/valveresearch

CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730 or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown

 

interventional-radiology-5511-in-use3-thumb
Low-Volume Contrast CT Angiography Via Pulmonary Artery Injection

Low-Volume Contrast CT Angiography Via Pulmonary Artery Injection

Posted on June 2, 2017 by in Procedures with no comments

The headline is a mouthful to digest, but this is an extremely informative and interesting article centered on reducing the amount of contrast needed in pre-procedure imaging for valve measurement and placement. All TAVR candidates undergo angiographic imaging to ensure that the cardiologist knows exactly what anatomical challenges are waiting ahead. Many of the candidates for the procedure (10-25%) have Chronic Kidney Disease (CKD), and the use of high volumes of contrast in traditional preprocedural imaging increases their risk for post procedure mortality. Dr. Truong and his colleagues demonstrated that use of the pulmonary artery for contrast delivery resulted in significantly lower contrast volumes.

“Low Volume Contrast CT Angiography Via Pulmonary Artery Injection for Measurement of Aortic Annulus in Patients Undergoing Transcatheter Aortic Valve Replacement (TAVR)”

Read the full article below, or visit the Journal of Invasive Cardiology May 2017.

NYM-TAVR-2

Low-Volume Contrast CT Angiography Via Pulmonary Artery Injection for Measurement of Aortic Annulus in Patients Undergoing Transcatheter Aortic Valve Replacement

Author(s):

Vien T. Truong, MD1,2;  Joseph Choo, MD1;  Luke McCoy, MD1;  Adam Mussman, MD1;  Stephanie Ambach3;  Dean Kereiakes, MD1;  Ian Sarembock, MD1;  Wojciech Mazur, MD1

181-186

Abstract: Objectives. To investigate the feasibility and image quality of low-dose contrast computed tomography (CT) angiography with pulmonary artery (PA) protocol. Background. Aortic stenosis is the most common valvular heart disease and transcatheter aortic valve replacement (TAVR) has evolved as an alternative method for surgical valve replacement in intermediate-risk and high-risk surgical patients. CT is essential for measurement of aortic annulus prior to TAVR. Methods. Twenty patients underwent a low-dose contrast study with PA protocol and 20 patients underwent a traditional-dose study (traditional protocol). In PA protocol, the pigtail catheter was advanced in the main pulmonary artery under fluoroscopic guidance, with a second pigtail placed in the abdominal aorta. The pigtail catheter and sheath were secured in position and the patient was taken to the CT scan area for CT angiography of the chest (with injection from the PA catheter), abdomen, and pelvis (with injection from abdominal aortic catheter). Results. The amount of contrast used was significantly lower in the PA protocol vs the traditional protocol (40 mL vs 99.50 ± 6.87 mL; P<.001) at the cost of reduced average signal (265 ± 60 HU vs 371 ± 70 HU; P<.001), but without affecting measurements of the aortic annulus. Furthermore, no statistically significant difference in serum creatinine concentration was observed before and 48 hours after contrast administration in the PA group. Conclusion. Our data provide evidence that the new PA technique can be performed safely with much lower volume of CT contrast without affecting assessment of aortic annulus size.

J INVASIVE CARDIOL 2017;29(5):181-186.

Key words: aortic annulus, aortic valve stenosis, computed tomography


Aortic stenosis (AS) is the most common adult valvular heart disease in developed countries, with a prevalence approaching 12.4% in those who are 75 years of age and older.1 Although aortic valve replacement (AVR) is the treatment of choice for symptomatic AS, as the prognosis is poor for those managed conservatively,2,3 surgical morbidity and mortality can still be problematic in high-risk patients. Transcatheter aortic valve replacement (TAVR) is now indicated for patients with symptomatic AS who have high4 or intermediate estimated surgical risk,5,6 and studies are in progress evaluating lower-risk populations.7 In recent randomized trials, TAVR significantly improved survival and quality of life over standard medical therapy (including percutaneous balloon valvotomy) in patients with inoperable severe symptomatic AS.8-10 In patients considered high surgical risk, 30-day and 1-year mortality rates were similar between balloon-expandable TAVR and surgical AVR.11 Chronic kidney disease (CKD) is a common comorbidity, affecting 10%-25% of patients undergoing TAVR and associated with increased short-term postprocedure mortality.12

Although appropriate sizing of the TAVR valve for implantation initially relied upon measurements of the aortic annulus diameter based upon transthoracic and transesophageal echocardiographic images, the superiority of cardiac computed tomography (CT) imaging in the assessment of aortic root, aortic annulus, and left ventricular outflow tract (LVOT) anatomy and dimensions has been clearly demonstrated. The Society of Cardiovascular Computed Tomography (SCCT) currently recommends CT imaging be performed in all patients under consideration for TAVR unless there is a contraindication.13 A substantial volume of 80 mL to 120 mL of contrast is required for the scan, which can lead to contrast-induced nephropathy (CIN) in patients with preexisting CKD.4,12

In our institution, patients being evaluated for TAVR with CKD and serum creatinine of 1.6 mg/dL or greater are generally excluded from cardiac CT imaging because of the risk of CIN. In these patients, aorto-iliac CT angiography using selective and limited contrast injection (10 mL of contrast) through a pigtail catheter advanced into the infrarenal abdominal aorta has been employed for several years to determine suitability for transfemoral vascular access for TAVR.

We describe a novel technique in which a second pigtail catheter is placed into the pulmonary artery (PA) at the time of pigtail catheter placement in the abdominal aorta (for selective aorto-iliac CT angiography) in the cardiac catheterization laboratory and the patient is then transferred to the CT scanner, where low-dose contrast is injected for CT angiography of the chest, abdomen, and pelvis with and without contrast (PA protocol).

The present study compares CT image quality between traditional intravenous and low-volume contrast PA protocols.

Methods

Patient population. This study is a retrospective analysis of 40 patients who underwent CT angiography with either traditional intravenous or PA protocols using a Philips Brilliance iCT 256-slice CT scanner. Consecutive patients were included, all of whom had adequate study quality. Creatinine levels were obtained at baseline and 48 hours after the procedure. CIN was defined as either a 25% increase in serum creatinine from baseline or 0.5 mg/dL (44 µmol/L) increase in absolute value, at 48-72 hours of intravenous contrast.14,15 A total of 40 mL of contrast was administered to each PA protocol patient. The comparator group comprised patients with serum creatinine <1.6 g/dL who had undergone cardiac and aorto-iliac CT imaging using the standard intravenous contrast injection protocol (80-120 mL of contrast total).4 The study was approved by the institutional review board.

Pulmonary artery (PA) protocol. Patients in the PA protocol were brought to the cardiac catheterization laboratory and were sterilely prepped and draped per our standard cardiac catheterization protocol. Vascular access was obtained in the femoral artery and vein in the standard fashion. A 5 Fr diagnostic pigtail catheter was positioned in the abdominal aorta distal to the renal arteries under fluoroscopic guidance. A PA catheter was then advanced into the PA under fluoroscopic guidance. An exchange-length, 0.25˝ J-tipped wire was advanced through the PA catheter, with removal of the PA catheter over the wire. The exchange-length wire was then used to position a 5 Fr diagnostic pigtail catheter under fluoroscopic guidance in the main PA. The catheters and sheaths were secured in position and the patient was transported for immediate CT angiography of the chest, abdomen, and pelvis using the following sequence: (1) helically acquired non-contrast CT images of the chest, abdomen, and pelvis were obtained and reconstructed at 0.9 mm slice thickness at a 0.45 mm interval with multiplanar reformats; (2) a total of 60 cc of contrast mix (30 cc Omnipaque 350 [iohexol; GE Healthcare] diluted with 30 cc normal saline) at 10 cc/s was administered through the PA catheter; (3) the interventional cardiologist responsible for the procedure removed the pigtail catheters; and (4) the arterial and venous sheaths were removed and manual pressure was applied for hemostasis.

Helically acquired images were obtained with retrospective electrocardiographic gating (without dose modulation) from the mid neck through diaphragm and reconstructed with a slice thickness of 0.9 mm and 0.45 mm spacing. The tube voltage is 120kV, and automatic current modulation is used.

Next, small field of view dedicated cardiac CTA images are reconstructed at 35%, 40%, 45%, and 75% of the R-R interval with a slice thickness of 0.9 mm and 0.45 mm spacing.

All post processing is performed on the Vitrea workstation. Measurements of the annulus are made on the systolic phase reconstruction (35%, 40%, or 45%), which subjectively shows the least motion artifact. Occasionally, measurements from the 75% reconstructed images are necessary in the event of substantial motion artifact on the systolic phase images.

Abdomen and pelvis CTA. A separate contrast injection is performed through the infrarenal aortic pigtail catheter with a total volume of 40 cc contrast mix (10 cc Omnipaque 350 diluted in 30 cc normal saline) at 10 cc/s. Helically acquired images are obtained from the upper abdomen through the pelvis and reconstructed at 0.9 mm slice thickness and 0.45 mm spacing.

Image analysis. Three-dimensional volume-rendered and maximum intensity projection (MIP) reformats were reconstructed at 0.5 mm slice thickness on the Vitrea workstation. The data were loaded into a standard multiplanar cardiac reformat package with images reconstructed in the coronal, sagittal, and transverse (axial) orientations, and then analyzed using a multiplanar oblique tool.

Intravascular CT attenuation (Hounsfield units; HU) and image noise defined as standard deviation (SD) of CT attenuation were measured by using region of interest (ROI) analysis. ROI of approximately 250 mm2 was drawn above and below the aortic valve (to avoid measurement contamination by heavily calcified leaflets). Contrast density was calculated as average of above and below the valve ROI’s end (expressed in HU). Examples of patients who underwent traditional and PA protocol are presented in Figure 1. Signal and signal-to-noise ratio (SNR) is measured below the valve. Contrast-to-noise ratio (CNR) is calculated to assess signal intensity difference between two regions (below the valve and surrounding myocardium). Based on these measurements, SNR and CNR were calculated as:16

SNR = HUbelow the valve / noise

CNR = [HUbelow the valve – HUsurrounding muscle] / noise

Aortic annulus measurement. Aortic annulus, aortic root, and LVOT assessments and measurements for prospective clinical planning for TAVR were obtained from three-dimensional volume-rendered and MIP reformats performed utilizing 3mensio Structural Heart Analysis software, version 7.1 (Pie Medical Imaging). Images from three systolic phases (35%, 40%, and 45% of R-R intervals) were analyzed, and the largest aortic annulus area and perimeter measurements were used for choosing the appropriate TAVR valve size. Rarely, motion artifact in systolic phase required analysis of the aortic annulus and aortic root based upon the 75% R-R interval diastolic phase images.

Analysis of vascular access for the prospective planning of TAVR was performed using the 3mensio Vascular Analysis Package, version 7.1 (Pie Medical Imaging). Two-dimensional and three-dimensional reconstructions of the abdominal aorta, iliac, and femoral arteries were performed to assess suitability for transfemoral artery approach.

Statistical analysis. Continuous variables are expressed as mean ± standard deviation for normal distributions and median (interquartile range [IQR]) for non-normal distributions. Normality was tested using the Shapiro-Wilk test. For the evaluation of qualitative variables, we used the Chi-Squared test. Independent-sample t-test was used to compare age, body mass index (BMI), contrast volume, average signal, signal, SNR, and CNR between two groups. Mann-Whitney U-test was performed to test for significant differences between cardiac index in two groups. Wilcoxon Signed Rank test was used to compare serum creatinine concentration before and after administration of contrast agent. Pearson’s correlation coefficient (R) or Spearman’s rank correlation coefficient (Rs) test were used to test the association of variables with normal distribution or non-normal distribution, respectively. A P-value of <.05 was considered statistically significant. Statistical analysis was performed using the SPSS 22 software program (SPS, Inc).

Results

The study consisted of 40 consecutive patients (20 in the PA group and 20 in the traditional group). The contrast volume was higher in the traditional group than in the PA group (P<.001). There were no differences in age, BMI, body surface area, or cardiac index between groups (Table 1). The average signal (P<.001), SNR (P<.01), and CNR (P=.02) were significantly higher in the traditional group vs the PA group (Table 2). The average signal in the traditional protocol was related to cardiac index (Rs = -0.773; P<.001), but not in the PA group (P=.82). Interestingly, there was a correlation between body surface area and average signal in the PA group (R= -0.528; P=.017), which was not observed in the traditional group (P=.41) (Figure 2). Aortic annulus measurement was feasible in all patients regardless of protocol. TAVR was performed successfully in all patients, with no more than mild perivalvular regurgitation. There were no complications related to the PA protocol. The median serum creatinine value in the patients undergoing PA protocol was 1.68 mg/dL (IQR, 1.58-2.24 mg/dL) before the administration of contrast and 1.81 (IQR, 1.49-2.37 mg/dL) 48 hours after the administration of contrast (difference was not statistically significant; P=.60). Only 1 of the 20 patients (5%) had an increase of at least 0.5 mg/dL in the serum creatinine concentration 48 hours after administration of the contrast agent.

Discussion

This study demonstrates the feasibility of a reduced contrast cardiac CT protocol using selective contrast injection into the PA in the planning for TAVR. The evolution of TAVR has been rapid over the last 5 years, and it is now being performed at many centers with excellent short-term and long-term outcomes.4 CT plays a central role in patient selection and evaluation prior to TAVR. CT provides accurate dimensions of the thoracoabdominal aorta and its iliofemoral branches to optimize vascular access and approach, atherosclerotic burden, anatomy of the ascending aorta, aortic root, and valve annulus, which are of critical importance in valve type and size selection.13,17 However, the use of large volumes of intravenous contrast agent in CT can lead to CIN. CIN can be seen in >10% of patients after contrast-enhanced CT.18 In high-risk patients (including those with diabetes mellitus, CKD, history of congestive heart failure, and older age), CIN has been estimated at 20%-30%.19 In our reduced contrast PA protocol group, only 1 patient (5%) with multiple risk factors developed CIN after exposure to contrast agent. On the other hand, several studies have suggested that intravenous contrast volume is less nephrotoxic than intraarterial administration.20,21PA injection seems more similar to intraarterial and might be worse than a large dose given intravenously.

CIN can be associated with prolonged hospitalization, accelerated onset of end-stage renal disease, the requirement for dialysis, increased costs, and increased mortality.22 The presence of preexisting CKD is known to be a factor predisposing patients to acute kidney injury and is associated with worse outcome following TAVR.12 The most effective means of preventing CIN involves adequate hydration by intravenous saline,23 withholding nephrotoxic medications, and, most critically, the administration of the lowest possible volume of CT contrast.24 In comparison with the traditional technique, the main advantage of our PA protocol was the use of lower contrast volume, which may decrease the incidence of CIN. Some reduction in contrast density was noted, but accurate assessment of the aortic root, aortic annulus, and LVOT for planning TAVR was still achievable. In the low-volume contrast PA protocol patients, attenuation of contrast density did not affect measurements of the ascending aorta and aortic annulus. In addition, PA technique was not sensitive to cardiac index; as such, there was no need to adjust either contrast volume or timing of contrast injection to patient cardiac index. Spagnolo et al reported the results of a study to investigate the feasibility and image quality of 64-slice CT angiography using an ultra-low-dose contrast volume in 162 patients with BMI ≤29 kg/m2 scheduled for TAVR. CT angiography of the entire aorta with a multiphasic, low-iodine dose and BMI-adapted contrast protocol (BMI <22 kg/m2: 40 mL; BMI 22-29 kg/m2: 55 mL) was performed. Image quality of the aortic root and ilio-femoral vessels was evaluated in all patients. Vascular attenuation was >200 HU at any vessel level and measurements at the aortic annulus and iliac arteries were feasible with a substantial reduction of contrast volume.25 However, this study excluded patients with BMI >29 kg/m2, in contrast with our PA protocol, in which patients were not excluded on the basis of BMI.

The principal risk of our PA protocol is its invasive nature compared with peripheral intravenous contrast injection and need for separate injection from a second pigtail catheter placed in the abdominal aorta to visualize the aorto-iliac and femoral arteries. Although the risks from PA catheterization are well described, much of the risk is related to distal PA rupture from aggressive advancement of the catheter and balloon inflation-associated PA rupture. Our technique involves positioning of the catheter over an exchange-length guidewire in the main PA and avoidance of catheter and wire advancement into the distal peripheral PA bed. Meticulous catheter and guidewire manipulation under active fluoroscopic imaging can reduce the risk of serious vascular complications. To reduce the risk of vascular complications from the arterial puncture required for aorto-iliac and femoral artery imaging, we are currently evaluating a modification of our protocol in which peripheral arteries are visualized with a single PA injection: a test bolus of 4.5 cc of contrast (10 cc total, 45% contrast/55% saline) is injected from the PA catheter. The ROI is placed in the descending aorta at the level of the carina; the typical delay is 11-24 s, and the scan starts continuously from neck to pelvis to cover the carotid arteries.

Study limitations. The limitations of our study include its retrospective nature and relatively small sample size. Although only 1 patient (5%) in our PA protocol developed CIN, our study does not address whether the reduced contrast load in the PA protocol reduces CIN when compared with the standard intravenous contrast load. We did not adjust PA contrast dose depending on body surface area, although our data suggest that CT contrast image quality in patients with higher body surface area may benefit from higher contrast volume. In the current study, we used iohexol rather than iodixanol. However, iodixanol has been demonstrated to be less nephrotoxic.26

Conclusion

Our data provide evidence that the new PA technique can be performed safely, with substantially lower volume of CT contrast and with excellent procedural outcomes, without sacrificing image quality and ability to measure aortic annulus.

References

1.    Osnabrugge RL, Mylotte D, Head SJ, et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol. 2013;62:1002-1012.

2.    Martinez-Selles M, Gomez Doblas JJ, Carro Hevia A, et al. Prospective registry of symptomatic severe aortic stenosis in octogenarians: a need for intervention. J Intern Med. 2014;275:608-620.

3.    Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:e57-e185.

4.    Holmes DR Jr, Mack MJ, Kaul S, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement: developed in collabration with the American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Failure Society of America, Mended Hearts, Society of Cardiovascular Anesthesiologists, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Thorac Cardiovasc Surg. 2012;144:e29-e84.

5.    Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609-1620.

6.    Thourani VH, Kodali S, Makkar RR, et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet. 2016;387:2218-2225. Epub 2016 Apr 3.

7.    Thyregod HG, Steinbruchel DA, Ihlemann N, et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. J Am Coll Cardiol. 2015;65:2184-2194.

8.    Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597-1607.

9.    Kapadia SR, Leon MB, Makkar RR, et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385:2485-2491.

10.    Kapadia SR, Tuzcu EM, Makkar RR, et al. Long-term outcomes of inoperable patients with aortic stenosis randomly assigned to transcatheter aortic valve replacement or standard therapy. Circulation. 2014;130:1483-1492.

11.    Kodali SK, Williams MR, Smith CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012;366:1686-1695.

12.    Rahman MS, Sharma R, Brecker SJD. Transcatheter aortic valve implantation in patients with pre-existing chronic kidney disease. IJC Heart & Vasculature. 2015;8:9-18.

13.    Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. 2012;6:366-380.

14.    Golshahi J, Nasri H, Gharipour M. Contrast-induced nephropathy; a literature review. J Nephropathology. 2014;3:51-56.

15.    Feldkamp T, Kribben A. Contrast media induced nephropathy: definition, incidence, outcome, pathophysiology, risk factors and prevention. Minerva Med. 2008;99:177-196.

16.    Geyer LL, De Cecco CN, Schoepf UJ, et al. Low-volume contrast medium protocol for comprehensive cardiac and aortoiliac CT assessment in the context of transcatheter aortic valve replacement. Academic Radiol. 2015;22:1138-1146.

17.    Jurencak T, Turek J, Kietselaer BL, et al. MDCT evaluation of aortic root and aortic valve prior to TAVI. What is the optimal imaging time point in the cardiac cycle? Eur Radiol. 2015;25:1975-1983.

18.    Mitchell AM, Jones AE, Tumlin JA, Kline JA. Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol. 2010;5:4-9. Epub 2009 Dec 3.

19.    Tepel M, Aspelin P, Lameire N. Contrast-induced nephropathy: a clinical and evidence-based approach. Circulation. 2006;113:1799-1806.

20.    Solomon R. Contrast-induced acute kidney injury: is there a risk after intravenous contrast? Clin J Am Soc Nephrol. 2008;3:1242-1243.

21.    Dong M, Jiao Z, Liu T, Guo F, Li G. Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controlled trials. J Nephrol. 2012;25:290-301.

22.    Jorgensen AL. Contrast-induced nephropathy: pathophysiology and preventive strategies. Crit Care Nurse. 2013;33:37-46.

23.    Weisbord SD, Palevsky PM. Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol. 2008;3:273-280.

24.    Azzalini L, Spagnoli V, Ly HQ. Contrast-induced nephropathy: from pathophysiology to preventive strategies. Can J Cardiol. 2016;32:247-255.

25.    Spagnolo P, Giglio M, Di Marco D, et al. Feasibility of ultra-low contrast 64-slice computed tomography angiography before transcatheter aortic valve implantation: a real-world experience. Eur Heart J Cardiovasc Imaging. 2016;17:24-33. Epub 2015 Jul 9.

26.    Chalmers N, Jackson RW. Comparison of iodixanol and iohexol in renal impairment. Br J Radiol. 1999;72:701-703.


From 1The Christ Hospital Health Network, Cincinnati, Ohio; 2Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam; 3University of Cincinnati, College of Allied Health Sciences, Cincinnati, Ohio. The research was performed at The Christ Hospital Health Network, Cincinnati, Ohio.

Disclosure: The authors have completed and returned the ICMJE Form for Disclosure of Potential Conflicts of Interest. The authors report no conflicts of interest regarding the content herein.

Manuscript submitted September 15, 2016, provisional acceptance given December 5, 2016, final version accepted February 3, 2017.

Address for correspondence: Wojciech Mazur, MD, The Christ Hospital Health Network, 2139 Auburn Avenue, Cincinnati, OH 45219. Email: mazurw@ohioheart.org


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)Fax: 913-648-0131Email: info@radpad.com

 Unknown
TAVR-Radiation-Protection
One-Third of Patients With Low Flow Aortic Stenosis Do Not Improve With TAVR, Research Finds

One-Third of Patients With Low Flow Aortic Stenosis Do Not Improve With TAVR, Research Finds

Posted on October 27, 2016 by in Procedures with no comments

Aortic Stenosis, the narrowing of the aortic valve in the heart, causing restricted blood flow, is one of the most common and serious valve disease problems. A TAVR procedure is the best option for treating this disease, but recent studies have shown that approximately one-third of low flow AS patients continue to suffer with low flow AS after the procedure.

Read the full article on the Radpad blog below, or see the original publication here: http://www.cathlabdigest.com/content/One-Third-Patients-Low-Flow-Aortic-Stenosis-Do-Not-Improve-TAVR-Research-Finds

One-Third of Patients With Low Flow Aortic Stenosis Do Not Improve With TAVR, Research Finds

Patients who do not improve with TAVR are found to have worse clinical outcomes at one year

TAVR-Radiation-Protection

June 16, 2016 – Aortic stenosis (AS), the narrowing of the aortic valve in the heart which causes restricted blood flow, is one of the most common and serious valve disease problems. For patients with one type of AS — low flow — transcatheter aortic valve replacement (TAVR), a minimally invasive procedure which corrects the damaged aortic valve, is often the best option for restoring the heart’s normal pumping function. However, approximately one-third of low flow AS patients treated with TAVR continue to suffer persistent low flow AS even after the procedure, ultimately increasing their risk of death. Now, researchers from the Perelman School of Medicine at the University of Pennsylvania have examined this high-risk patient population to determine the cause of this persistent low flow AS and to evaluate their risk of dying during the year following the procedure. Their findings are detailed in a paper published in the Journal of the American Medical Association – Cardiology.

“There has been a lot of interest in these patients with low flow AS, as their surgical mortality is higher than other patients. TAVR is often a good option, but not all of them will be able to normalize flow following the procedure and these persistently low flow patients have a 60 percent higher rate of mortality at one year,” said Howard C. Herrmann, MD, FACC, MSCAI, John W. Bryfogle Professor of Cardiovascular Medicine and Surgery, and director of Penn Medicine’s Interventional Cardiology Program. “Low flow before TAVR is one of the most important predictors of mortality following TAVR, but it is one of the harder qualities to measure. This presents a challenge to properly treating patients with low flow AS, and can leave some patients at higher risk.”

To better understand the potential benefits of TAVR for low flow AS, researchers conducted an analysis of 984 patients with low flow AS from the PARTNER trial and continued access registry from April 2014 through January 2016. A baseline and follow-up echocardiogram, evaluation of post-TAVR hemodynamics — blood flow — and one year outcomes were assessed.

Through this analysis, researchers identified the large subgroup of patients who, following TAVR, failed to regain normal flow despite a successful procedure. In the first six months following TAVR, flow improved in roughly 66 percent of the patients evaluated. However, those with severe low flow AS had the highest mortality rate — 26 percent — at one year, as compared to approximately 20 percent for those with moderate low flow and even less for those with normal flow.

“Unfortunately, many centers do not routinely measure flow, but rather focus more on a patient’s pressure gradient or valve area when evaluating aortic stenosis pre-and post-TAVR,” said Herrmann. “While low flow is more challenging to monitor, this measurement can better inform the patient’s risk of mortality, and in turn lead to better treatment.”

The researchers noted that the identification of remedial, or treatable, causes of persistent low flow following TAVR, such as severe mitral regurgitation and atrial fibrillation, may represent an opportunity to improve the outcomes of these patients.

Journal Reference:

  1. Venkatesh Y. Anjan, MD; Howard C. Herrmann, MD; Philippe Pibarot, PhD; William J. Stewart, MD; Samir Kapadia, MD; E. Murat Tuzcu, MD; Vasilis Babaliaros, MD; Vinod H. Thourani, MD; Wilson Y. Szeto, MD; Joseph E. Bavaria, MD; Susheel Kodali, MD; Rebecca T. Hahn, MD; Mathew Williams, MD; D. Craig Miller, MD; Pamela S. Douglas, MD; Martin B. Leon, MD. Evaluation of Flow After Transcatheter Aortic Valve Replacement in Patients With Low-Flow Aortic Stenosis: A Secondary Analysis of the PARTNER Randomized Clinical Trial. Journal of the American Medical Association — Cardiology, June 2016 DOI: 10.1001/jamacardio.2016.0759
alternate access for CTOs by RADPAD
RADPAD CLI Perspectives: Alternative Access for CTOs in CLI

RADPAD CLI Perspectives: Alternative Access for CTOs in CLI

Posted on September 12, 2016 by in Procedures with no comments

Last year, Cath Lab Digest published an interview covering alternative access for chronic total occlusions in critical limb ischemia. J.A. Mustapha, MD, interviewed Andrej Schmidt, MD, Department of Angiology, Leipzig Heart Center, Leipzig, Germany. 

Read the full article below or click the link for the original publicaiton:

http://www.cathlabdigest.com/article/CLI-PERSPECTIVES-Alternative-Access-CTOs-CLI

 


CLI PERSPECTIVES: Alternative Access for CTOs in CLI

Author(s):

CLI Perspectives is headed by section editor J.A. Mustapha, MD, 

Metro Health Hospital, Wyoming, Michigan. 

 

Topics:
Access
Critical limb ischemia
Chronic total occlusions (CTO)
Issue Number:
Volume 23 – Issue 2 – February, 2015

 

 

 

J. Mustapha: What is your preferred access method for crossing complex superficial femoral artery (SFA) CTOs, with the exception of ostial SFA disease?

A. Schmidt: Most SFA CTO crossing is performed via ipsilateral antegrade approach.

 

 

J. Mustapha: Why do you prefer an ipsilateral antegrade approach?

A. Schmidt: For multiple beneficial reasons, including shortening the distance from the access site to the CTO, enhancement of pushability, and much better wire and catheter torque.

 

J. Mustapha: Do you ever perform a contralateral access approach for SFA CTOs?

 

A. Schmidt: Yes, mostly in patients who are not good candidates for antegrade access such as obese patients, those with proximal disease, ostial SFA disease, or CTOs. Mostly, I prefer antegrade access for SFA CTOs.

 

J. Mustapha: Many of us have seen you perform live cases and have witnessed your excellent techniques in retrograde popliteal and SFA access in complex CTO crossing. Why do you access these segments?

A. Schmidt: We access distal to the CTO cap of the SFA or popliteal CTO only when we fail to cross from antegrade approach first. The reason we access close to the CTO is similar to the reasoning of the antegrade access, close to the CTO cap, which in turns helps with retrograde pushability and torqueability.

J. Mustapha: What advice would you give practitioners who would like to perform similar retrograde access in the SFA/popliteal?

A. Schmidt: Proceed with caution, as this should only be attempted after an antegrade approach fails.  Be sure to have a balloon across the occluded target lesion and the guidewire across the distal access before taking the access catheter out, so that in case a problem (dissection, occlusion) occurs at the distal entrance, balloon angioplasty can be done to fix it. Hemostasis is principally done by external compression.

 

 

J. Mustapha: What is the average time of your balloon inflation?

A. Schmidt: The time depends on the size of the access catheter or the sheath used. Most of the time, we use the smallest catheter possible, .018-inch to .035-inch.  Therefore, we perform a three-minute balloon inflation followed by an angiogram.

 

J. Mustapha: Is this the same for a stick in a stent vs no stent?

A. Schmidt: Yes.

 

J. Mustapha: Do you worry about harming the stent after getting access in it?

A. Schmidt: No. So far, in our experience, we have not had any issues with stents in these situations. Keep in mind, we only get an access in the stent in extreme cases and place the smallest catheter possible.

J. Mustapha: Moving to retrograde tibial access, which access method do you use to enter the artery, angiogram-guided or ultrasound-guided?

A. Schmidt: We use angiogram-guided access.

 

J. Mustapha: Which is your preferred tibial artery for retrograde access and which part of the artery do you like to enter?

A. Schmidt: My preferred artery is the anterior tibial artery and I prefer to enter it proximally.

 

J. Mustapha: Why proximal versus distal?

A. Schmidt: Proximally, because the vessel diameter is larger and accommodates a 4 French sheath if needed.

 

J. Mustapha: How do you get the access?

A. Schmidt: First we position the foot supine and support it with a rolled-up towel, then perform an angiogram in left oblique 30° view, and enter the needle thru the skin into the artery. If no blood returns, we perform an oblique view with repeat angiogram which helps show the tip of the needle and artery.

 

J. Mustapha: How do you obtain hemostasis after the proximal tibial access?

A. Schmidt: Most of the time, we use an external blood pressure cuff.  Occasionally, we use an intra-arterial balloon.

 

J. Mustapha: If needed, what are your tips and tricks for getting distal tibial access?

A. Schmidt: Starting with the dorsalis pedis access, foot positioning is important. First we position the foot supine and support it with a rolled-up towel, then the C-arm is positioned at about 15° ipsilateral and 10° cranial. We then use the quick access needle holder, followed with an angiogram. Also, we can puncture and perform contrast injection simultaneously, as needed.

 

J. Mustapha: Do you recommend road mapping for tibial access?

A. Schmidt: No, side movements of the artery due to puncture needles are not noticed, which may lead to accidental venous access and failed attempts. Also, I don’t recommend coming in from a lateral approach.

 

J. Mustapha: How do you know your needle is in line with the artery?

A. Schmidt: After angiogram is done, make the needle form one line with the artery (Figure 1A-B).

 

J. Mustapha: What do you do in the setting of no blood return?

A. Schmidt: Obtain oblique orthogonal views at 55-65°, load the guidewire into the needle, and perform contrast injection via the proximal sheath and pull back very slowly. Keep testing if the guidewire makes it through. Another method is to pull back slowly and inject contrast from the needle holder until you see contrast in the artery, then advance the guidewire (Figure 2A-G).

 

J. Mustapha: Any tips on how to get peroneal access?

A. Schmidt: Start with an anterior approach. Place the C-arm at ipsilateral LAO 30° (Figure 3A), perform antegrade angiogram, and position the needle in line with the artery.  If no success, then move the C-arm to right anterior oblique (RAO) 70° (Figure 3B) and repeat angiogram. Redirect the needle toward the artery, puncturing the peroneal artery through the membrana interossea.

 

J. Mustapha: Which puncture site is safer?

A. Schmidt: The distal tibial access approach is safer, as it is not associated with compartment syndrome.

 

J. Mustapha: What needles to you use for proximal and distal tibial access?

A. Schmidt: For proximal anterior tibial, posterior tibial, and peroneal access, we use a 7cm, 21g needle. For distal tibials, we use a 4cm, 21g needle.

 

J. Mustapha: Please advise what NOT to do in infrapopliteal retrograde access.

A. Schmidt: One should not access communication arteries, especially those off of the peroneal artery, as shown in Figure 4.

 

J. Mustapha: How do you minimize radiation exposure?

A. Schmidt: My angiographical approach to retrograde pedal and tibial puncture is quick and precise, minimizing radiation exposure. I attribute this to experience and the right equipment (Figure 5A). I wear a ring dosimeter (Figure 5B) to measure my exposure.

Disclosure: Dr. Mustapha reports he is a consultant to Bard Peripheral Vascular, Covidien, Cordis, CSI, Spectranetics, and Boston Scientific. Dr. Schmidt reports occasional consulting for Bard and Medtronic.

Dr. Andrej Schmidt and Dr. J.A. Mustapha can be contacted at jihad.mustapha@metrogr.org

 

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)

 

14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Follow RADPAD® on Facebook
Unknown

 

New Technique to Cardiac Catheterization Procedure

Posted on June 3, 2016 by in Procedures with no comments

CARDIAC CATH:

Interventional cardiologist Dr. John Wang, chief of the Cardiac Catheterization Lab at MedStar Union Memorial Hospital in Baltimore, Maryland demonstrates a new technique to cardiac catheterization procedure by using transradial access.

Patients may need a cardiac catheterization if they are experiencing cholesterol narrowing’s in the blood vessels which may result in chest pain or even a heartattack. This procedure is typically performed through the femoral artery, but there is sufficient collateral blood flow to the hand to make the wrist an accessible location for catheterization. There is no risk of bleeding complications where the catheter is inserter so this technique is used to increase patient comfort and experience a quicker recovery. If the patient is in need of a stent, this can be placed through the wrist as well.

Link to demonstration video:

Dr. John Wang also discusses the benefits of transradial cardiac catheterization:

https://youtu.be/V_SftPdJUDM

 

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)Fax: 913-648-0131