1-877-7RADPAD     info@radpad.com

RADPAD Presents: Using the Venous System to Re-Vascularize Limbs

revascularization-of-limbs
RADPAD Presents: Using the Venous System to Re-Vascularize Limbs

RADPAD Presents: Using the Venous System to Re-Vascularize Limbs

Posted on October 4, 2017 by in Other Stories, Procedures with no comments

This is an extremely interesting article on using the venous system to re-vascularize “cold feet” and the challenges that come with the process. Saving limbs has become the rally cry for vascular surgeons around the world. They know that the patient’s chances for any long term success are tied to keeping their limbs.


Update on the Novel AV Reversal Therapy for End-Stage CLI

CLI Perspectives is headed by section editor J.A. Mustapha, MD, Metro Health Hospital, Wyoming, Michigan.

Dr. Mustapha interviews Steven Kum, MBBS, FRCS, Novena Vascular & Varicose Vein Centre, Mount Elizabeth Hospital; Director of Vascular Services, Department of Surgery, Changi General Hospital, Singapore.

 

Introduction

J.A. Mustapha, MD

End-stage critical limb ischemia (CLI) is what we refer to as patients who have had revascularization attempts and are still facing major amputation. These patients are also referred to as Rutherford 6. During recent presentations at the 2016 Amputation Prevention Symposium (AMP) and 2016 Vascular InterVentional Advances (VIVA) conferences, Dr. George Adams and Dr. Jihad Mustapha presented data from the LIBERTY trial that showed 78% of Rutherford 6 patient were discharged home within 27 hours after endovascular revascularization, without limb loss. Their 30-day follow-up visit showed a similar high number of patients with their target limb still intact. Is it time to reconsider the fate of patients with Rutherford 6 and consider drastic forms of revascularizations prior to major amputations? Dr. Steven Kum of Singapore believes that patients with end-stage disease can still benefit from a unique procedure called arterial venous flow reversal. Dr. Kum, a vascular surgeon, developed an endovascular procedure to not only create the fistula, but also allow the venous conduit to arterialize over time.

J.A. Mustapha, MD: Can you explain the arterial venous flow reversal (AVR) concept?

Steven Kum, MBBS: Thanks, Jihad, for the invitation to contribute. Well, essentially, if we have an arterial system that cannot be opened, we preferentially pressurize the venous system and route oxygenated blood flow through this system. It’s a little analogous to traffic between two cities. Should a freeway be unserviceable in one direction, we hop over to the other side of the road to take advantage of the undiseased path (i.e., the veins) to reach where we want to go. This flow is reversed not only in the major veins, but also the smaller veins in the foot.

Dr. Mustapha: Can you explain the physiological changes that happen and the time frames for the changes?

Dr. Kum: Flow reversal is not a new concept. It is still occasionally done in the coronary system during a coronary bypass when the surgeon has to perform retrograde perfusion. There have been many reports in the past of surgical venous arterialization and contemporary surgical series are encouraging. We are still trying to understand the physiological changes. Immediately after flow reversal, arterialization of the veins and pressurization of the venous system occurs. We believe that this pressurization leads to oxygenation of the capillary bed.

Dr. Mustapha: To date, how many cases have been performed at your center and how many do you predict have been performed worldwide?

Dr. Kum: We have performed just under 15 cases in our center, but I have been closely involved in several European centers with a U.S. feasibility trial starting soon this year. I anticipate that as we push beyond the extreme interventions that we are already now doing, we are in a sense victims of our own success and will see more of these patients with end-stage disease. Preventing amputations saves legs and lives, but together with better medical therapy, our patients are surviving longer and have more severe disease every time we re-intervene. This may offer a solution for the global CLI pandemic.

Dr. Mustapha: Can you describe the technical procedure and give an understanding of the end results?

Dr. Kum: We have started using the LimFlow system (LimFlow SA) to do percutaneous deep venous arterialization (DVA) for several years now. The AV flow reversal leads to DVA.

Essentially, after antegrade 7 French (F) access and retrograde 5F venous access under ultrasound guidance, we do a double injection angiogram of both the artery and the veins at the intended area of crossing between the artery and the vein (the “crossover point”). After sufficient pre-dilatation, a 7F catheter (the “A” catheter), housing an ultrasound-emitting crystal is introduced into the artery in an antegrade fashion and positioned adjacent to the crossover point. Similarly, a 5F venous catheter (the “V” catheter), housing an ultrasound-receiving crystal, is introduced via the retrograde 5F sheath and positioned adjacent to the “A” catheter. With the help of a computer system, the 2 catheters are aligned. A needle system moves between the artery and vein followed by a wire, creating the arteriovenous fistula (AVF).  The AVF is then ordinated and matured with a covered stent. Subsequent covered stents are used to serve as an endovenous conduit to drive a large volume of blood to the ankle. These covered stents serve to cover the numerous venous branches/collaterals that may “bleed off” the flow towards the heart rather than down to the foot. A key obstacle to the blood flowing to the foot is the valves in the foot. These impediments are, in my opinion, best addressed with a valve cutter. The team at LimFlow has designed a unique tool to address this issue percutaneously.

Dr. Mustapha: How do you determine if a patient is a good candidate for the procedure? 

Dr. Kum: We must remember that the patients we have selected are end-stage CLI patients. This implies that they have no reasonable endovascular or open surgical bypass options for revascularization. As peripheral arterial disease is a systemic disease, we would expect the same disease process in the other vascular beds.  Coupled with the advanced age of these patients, we could say these patients are fragile. Clinical selection of these patients relies heavily on good old clinical evaluation and some tests. In general, heart function should be more than 40%, and renal function reasonable. The extent of soft tissue loss and infection should not be too severe and we rely on the Society of Vascular Surgery Wound, Ischemia and foot Infection (WIfI) classification system to guide us on the suitability of these patients.

In addition, several other angiographic and sonographers criteria should be met.  The target vein for retrograde access should be greater than 3 mm in size, and the inflow artery just proximal to the crossing point should be greater than 3.5 mm in diameter, especially in calcified vessels. This means that aggressive pre dilatation of the inflow vessels is essential.

Dr. Mustapha: Have you considered performing the AVR procedure on patients with Rutherford 5?  

Dr. Kum: In our initial experience, we started treating end-stage patients as we deemed that these patients had no other alternative. As our technique and experience with the procedure has grown, we have started treating patients who are not end stage. A consideration would be to offer the procedure to someone who required a specific angiosome to be revascularized. Percutaneous DVA would be able to reperfuse the specific angiosome, sparing a non-contributory angiosome from potential restenosis. In my opinion, this holds promise, as we leave existing collateral circulation alone.

Dr. Mustapha: Do you follow a specific post-operative follow-up algorithm?  

Dr. Kum: Post procedure, we encourage the continuation of therapeutic anticoagulation for 48 hours. Closure devices are regularly employed post procedure to allow this. Intravenous antibiotics are continued as per institution protocol. In general, we err on the side of caution and prefer a longer course of intravenous antibiotics due to the large amount of covered stent implanted, especially if the foot wound is infected. In anticipation of foot swelling, which is a sign of successful venous perfusion, we elevate the foot for 48 hours and ambulate the patient thereafter.

Dr. Mustapha: What is your advice to operators who are considering doing arterial venous flow reversal in their institutions?

Dr. Kum: There is a learning curve and the LimFlow device makes it much simpler to perform. It is absolutely crucial that these centers have good wound care programs.  Venous arteriolization, in my opinion, is able to perfuse the foot. Wound care is somewhat different from a standard arterial revascularization (the details which cannot be covered here). As with all programs, a dedicated team will ensure that a good angiographic result translates to a good clinical result. This is especially true in percutaneous DVA.

Read the original interview:

http://www.cathlabdigest.com/article/Update-Novel-AV-Reversal-Therapy-End-Stage-CLI


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730 or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown
5511-used-in-cardiac-cath-procedure-thumb
RADPAD Presents: Cardiovascular Procedure Volume Growth Report

RADPAD Presents: Cardiovascular Procedure Volume Growth Report

Posted on September 19, 2017 by in Uncategorized with no comments

Here we present an article from MedMarket Diligence that provides information about the growth of cardiovascular procedure volume worldwide.

Based on their report described below, the volume of procedures is predicted to grow by an average of 3.7% per year from 2016 – 2022. The volume of corresponding surgeries and transcatheter interventions is forecast to expand to more than 18.73 million.

 

Cardiovascular procedure volume growth (interventional and surgical)

Cardiovascular surgical and interventional procedures are performed to treat conditions causing inadequate blood flow and supply of oxygen and nutrients to organs and tissues of the body. These conditions include the obstruction or deformation of arterial and venous pathways, distortion in the electrical conducting and pacing activity of the heart, and impaired pumping function of the heart muscle, or some combination of circulatory, cardiac rhythm, and myocardial disorders. Specifically, these procedures are:

  • Coronary artery bypass graft (CABG) surgery;
  • Coronary angioplasty and stenting;
  • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

For 2016 to 2022, the total worldwide volume of these cardiovascular procedures is forecast to expand on average by 3.7% per year to over 18.73 million corresponding surgeries and transcatheter interventions in the year 2022. The largest absolute gains can be expected in peripheral arterial interventions (thanks to explosive expansion in utilization of drug-coated balloons in all market geographies), followed by coronary revascularization (supported by continued strong growth in Chinese and Indian PCI utilization) and endovascular venous interventions (driven by grossly underserved patient caseloads within the same Chinese and Indian market geography).

Venous indications are also expected to register the fastest (5.1%) relative procedural growth, followed by peripheral revascularization (with 4.0% average annual advances) and aortic aneurysm repair (projected to show a 3.6% average annual expansion).

Source: MedMarket Diligence, LLC; “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022,” (Report #C500).

Geographically, Asian-Pacific (APAC) market geography accounts for slightly larger share of the global CVD procedure volume than the U.S. (29.5% vs 29,3% of the total), followed by the largest Western European states (with 23.9%) and ROW geographies (with 17.3%). Because of the faster growth in all covered categories of CVD procedures, the share of APAC can be expected to increase to 33.5% of the total by the year 2022, mostly at the expense of the U.S. and Western Europe.

However, in relative per capita terms, covered APAC territories (e.g., China and India) are continuing to lag far behind developed Western states in utilization rates of therapeutic CVD interventions with roughly 1.57 procedures per million of population performed in 2015 for APAC region versus about 13.4 and 12.3 CVD interventions done per million of population in the U.S. and largest Western European countries.

Source: MedMarket Diligence, LLC; “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022,” (Report #C500).


Global Cardiovascular Procedures report #C500 details the current and projected surgical and interventional therapeutic procedures commonly used in the management of acute and chronic conditions affecting myocardium and vascular system.

Read the original article:

http://blog.mediligence.com/2017/02/13/cardiovascular-procedure-volume-growth-interventional-and-surgical/


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730 or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown

RADPAD Safety News: Low Doses of Radiation Could Harm Cardiovascular Health

Posted on August 31, 2017 by in Safety with no comments

It is known that populations exposed to ionizing radiation in medical or environmental settings have symptoms suggesting an increased risk of cardiovascular disease. However, this research study suggests that low exposure to doses of around 0.5 Gy (the equivalent of repeated CT scans) is associated with a significantly increased risk of cardiovascular damage, up to decades after exposure. This raises questions about the nature of long-term alterations in the heart’s vascular system caused by such doses.”

For more about this study read the article below, originally published by Diagnostic and Interventional Cardiology:


NEWS | RADIATION DOSE MANAGEMENT | JULY 17, 2017

Low Doses of Radiation Could Harm Cardiovascular Health

New study suggests dose of 0.5 Gy associated with significantly increased risk of cardiovascular damage as long as decades after exposure. 

Low Doses of Radiation Could Harm Cardiovascular Health

July 17, 2017 — Ionizing radiation, such as X-rays, has a harmful effect on the cardiovascular system even at doses equivalent to recurrent computed tomography (CT) imaging, a new study published in the International Journal of Radiation Biology suggests.

It is known that populations exposed to ionizing radiation in medical or environmental settings have symptoms suggesting an increased risk of cardiovascular disease. However, this research study suggests that low exposure to doses of around 0.5 Gy (the equivalent of repeated CT scans) is associated with a significantly increased risk of cardiovascular damage, up to decades after exposure. This raises questions about the nature of long-term alterations in the heart’s vascular system caused by such doses.

Soile Tapio, M.D., and Omid Azimzadeh, M.D., of Helmholtz Zentrum München, German Research Center for Environmental Health, and colleagues studied how human coronary artery endothelial cells respond to a relatively low radiation dose of 0.5 Gy and found several permanent alterations in the cells that had the potential to adversely affect their essential functions.

Endothelial cells, which form the inner layer of blood vessels, were found to produce reduced amounts of nitric oxide, an essential molecule in several physiological processes including vascular contraction. Previously, high-dose radiation (16 Gy) has been shown to persistently reduce levels of nitric oxide in the serum of mice, but this is the first study to indicate impaired nitric oxide signaling at much lower doses.

Cells damaged by low-dose radiation also produced increased amounts of reactive oxygen species (ROS), which are formed as a natural byproduct of normal oxygen metabolism and play an important role in cell signaling. Increased ROS can damage DNA and proteins.

In addition, exposed cardiac endothelial cells were found to have reduced capacity to degrade oxidized proteins and to be aging prematurely. Such harmful changes did not occur immediately (that is, within a day) but first began in the longer term (one to two weeks). As these cells do not divide rapidly in the body, this observed time in the cell culture would correspond to several years in the living organism.

All these molecular changes are indicative of long-term premature dysfunction and suggest a mechanistic explanation to the epidemiological data showing increased risk of cardiovascular disease after low-dose radiation exposure, the authors concluded.

 


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730 or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown
9100-in-use-thumb
RADPAD Interventional Cardiology News: the EARLY TAVR Trial

RADPAD Interventional Cardiology News: the EARLY TAVR Trial

Posted on July 21, 2017 by in Procedures with no comments

The following article from Diagnostic and Interventional Cardiology  offers interesting news about the EARLY TAVR trial, and insights from Philippe Genereux, M.D., interventional cardiologist and the trial’s lead investigator.

The EARLY TAVR trial’s purpose is to assess any health benefit from replacing the aortic valve through a minimally invasive, catheter-based procedure prior to patients showing symptoms, as opposed to the standard of care of observing patients until symptoms develop.

 

FEATURE | HEART VALVE TECHNOLOGY | JULY 14, 2017

First Patient in World Enrolled in Study Evaluating TAVR for Asymptomatic Severe Aortic Stenosis

Morristown Medical Center randomizes first patient in the EARLY TAVR trial, which may change treatment paradigm to save heart function, prevent deterioration

Edwards Sapien 3 TAVR valve will be implanted in asymptomatic aortic stenosis patients in the EARLY TAVR Trial

July 14, 2017 — Morristown Medical Center, part of Atlantic Health System, has randomized the first patient in the world to the EARLY TAVR (Evaluation of Transcatheter Aortic Valve Replacement Compared to SurveilLance for Patients With AsYmptomatic Severe Aortic Stenosis) trial.

Philippe Genereux, M.D., an interventional cardiologist and co-director of the Structural Heart Program at the Gagnon Cardiovascular Institute at Morristown Medical Center, serves as the trial’s principal (lead) investigator. The study is a U.S. Food and Drug Administration approved inventigational device exemption (IDE) trial.

Traditionally, patients with severe aortic stenosis (AS)—a narrowing of the aortic valve in the heart that keeps it from opening fully—who do not yet have symptoms (asymptomatic), are regularly followed and monitored by their cardiologist, and treatment is not initiated until they become symptomatic. However, many elderly patients with asymptomatic severe AS can develop irreversible heart damage or even die while waiting for symptoms to appear. The EARLY TAVR trial will evaluate whether there is benefit from replacing the aortic valve via a minimally invasive, catheter-based procedure (called a transcatheter aortic valve replacement) before patients develop symptoms (shortness of breath, dizziness, fainting, or angina) as compared to the standard of care of watching the patient until symptoms develop.

“The EARLY TAVR trial is an incredibly important trial for the more than 2.5 million people who suffer from aortic stenosis because it may provide an answer to the frequent dilemma cardiologists face about how they should treat severe aortic stenosis, even though patients have no symptoms,” Genereux explained. “The progression of aortic stenosis is unpredictable, and there may be a price to pay for waiting to treat—the goal of early intervention with valve replacement is to preserve the heart’s function, prevent further heart deterioration, and in some case, death.”

“As a nationally recognized leader in cardiology and cardiovascular surgery, Atlantic Health System is committed to both prolonging and improving the quality of life for patients with heart disease,” said Linda D. Gillam, M.D., MPH, The Dorothy and Lloyd Huck Chair of Cardiovascular Medicine at Morristown Medical Center/Atlantic Health System. “Our participation in clinical trials, like EARLY TAVR, not only ensures our patients have access to new treatments before they are approved or available to the general public, but helps our clinicians remain on the cutting edge of medicine with access to the latest medications, devices, and technology.”

 

About the EARLY TAVR Trial

Evaluation of Transcatheter Aortic Valve Replacement Compared to SurveilLance for Patients With AsYmptomatic Severe Aortic Stenosis (EARLY TAVR) is a randomized, controlled, multi-center clinical trial study. Patients aged 65 and older diagnosed with asymptomatic, severe aortic stenosis will be randomized to receive a transcatheter aortic valve replacement (TAVR) with the Edwards Sapien 3 heart valve, or standard of care clinical surveillance. The study will enroll 1,000 patients in 65 cardiovascular centers.

Patients will be randomized (TAVR or surveillance) based on their ability to perform a treadmill stress test, as well as other factors. Those patients with a positive treadmill stress test or who do not meet other factors for randomization may be followed in a registry for data collection on subsequent treatment and mortality, as applicable.

The EARLY TAVR trial is sponsored by Edwards Lifesciences. According to Edwards Lifesciences, global transcatheter heart valve therapy (THVT) sales rose 29 percent to $432 million in the past year. In the United States, sales grew by 38 percent. Edwards said cardiac surgeons and interventional cardiologists are now implanting the company’s Sapien 3 TAVR devices at more than 500 hospitals in the U.S.

For more information: www.atlantichealth.org/valveresearch

CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730 or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown

 

interventional-radiology-5511-in-use3-thumb
Low-Volume Contrast CT Angiography Via Pulmonary Artery Injection

Low-Volume Contrast CT Angiography Via Pulmonary Artery Injection

Posted on June 2, 2017 by in Procedures with no comments

The headline is a mouthful to digest, but this is an extremely informative and interesting article centered on reducing the amount of contrast needed in pre-procedure imaging for valve measurement and placement. All TAVR candidates undergo angiographic imaging to ensure that the cardiologist knows exactly what anatomical challenges are waiting ahead. Many of the candidates for the procedure (10-25%) have Chronic Kidney Disease (CKD), and the use of high volumes of contrast in traditional preprocedural imaging increases their risk for post procedure mortality. Dr. Truong and his colleagues demonstrated that use of the pulmonary artery for contrast delivery resulted in significantly lower contrast volumes.

“Low Volume Contrast CT Angiography Via Pulmonary Artery Injection for Measurement of Aortic Annulus in Patients Undergoing Transcatheter Aortic Valve Replacement (TAVR)”

Read the full article below, or visit the Journal of Invasive Cardiology May 2017.

NYM-TAVR-2

Low-Volume Contrast CT Angiography Via Pulmonary Artery Injection for Measurement of Aortic Annulus in Patients Undergoing Transcatheter Aortic Valve Replacement

Author(s):

Vien T. Truong, MD1,2;  Joseph Choo, MD1;  Luke McCoy, MD1;  Adam Mussman, MD1;  Stephanie Ambach3;  Dean Kereiakes, MD1;  Ian Sarembock, MD1;  Wojciech Mazur, MD1

181-186

Abstract: Objectives. To investigate the feasibility and image quality of low-dose contrast computed tomography (CT) angiography with pulmonary artery (PA) protocol. Background. Aortic stenosis is the most common valvular heart disease and transcatheter aortic valve replacement (TAVR) has evolved as an alternative method for surgical valve replacement in intermediate-risk and high-risk surgical patients. CT is essential for measurement of aortic annulus prior to TAVR. Methods. Twenty patients underwent a low-dose contrast study with PA protocol and 20 patients underwent a traditional-dose study (traditional protocol). In PA protocol, the pigtail catheter was advanced in the main pulmonary artery under fluoroscopic guidance, with a second pigtail placed in the abdominal aorta. The pigtail catheter and sheath were secured in position and the patient was taken to the CT scan area for CT angiography of the chest (with injection from the PA catheter), abdomen, and pelvis (with injection from abdominal aortic catheter). Results. The amount of contrast used was significantly lower in the PA protocol vs the traditional protocol (40 mL vs 99.50 ± 6.87 mL; P<.001) at the cost of reduced average signal (265 ± 60 HU vs 371 ± 70 HU; P<.001), but without affecting measurements of the aortic annulus. Furthermore, no statistically significant difference in serum creatinine concentration was observed before and 48 hours after contrast administration in the PA group. Conclusion. Our data provide evidence that the new PA technique can be performed safely with much lower volume of CT contrast without affecting assessment of aortic annulus size.

J INVASIVE CARDIOL 2017;29(5):181-186.

Key words: aortic annulus, aortic valve stenosis, computed tomography


Aortic stenosis (AS) is the most common adult valvular heart disease in developed countries, with a prevalence approaching 12.4% in those who are 75 years of age and older.1 Although aortic valve replacement (AVR) is the treatment of choice for symptomatic AS, as the prognosis is poor for those managed conservatively,2,3 surgical morbidity and mortality can still be problematic in high-risk patients. Transcatheter aortic valve replacement (TAVR) is now indicated for patients with symptomatic AS who have high4 or intermediate estimated surgical risk,5,6 and studies are in progress evaluating lower-risk populations.7 In recent randomized trials, TAVR significantly improved survival and quality of life over standard medical therapy (including percutaneous balloon valvotomy) in patients with inoperable severe symptomatic AS.8-10 In patients considered high surgical risk, 30-day and 1-year mortality rates were similar between balloon-expandable TAVR and surgical AVR.11 Chronic kidney disease (CKD) is a common comorbidity, affecting 10%-25% of patients undergoing TAVR and associated with increased short-term postprocedure mortality.12

Although appropriate sizing of the TAVR valve for implantation initially relied upon measurements of the aortic annulus diameter based upon transthoracic and transesophageal echocardiographic images, the superiority of cardiac computed tomography (CT) imaging in the assessment of aortic root, aortic annulus, and left ventricular outflow tract (LVOT) anatomy and dimensions has been clearly demonstrated. The Society of Cardiovascular Computed Tomography (SCCT) currently recommends CT imaging be performed in all patients under consideration for TAVR unless there is a contraindication.13 A substantial volume of 80 mL to 120 mL of contrast is required for the scan, which can lead to contrast-induced nephropathy (CIN) in patients with preexisting CKD.4,12

In our institution, patients being evaluated for TAVR with CKD and serum creatinine of 1.6 mg/dL or greater are generally excluded from cardiac CT imaging because of the risk of CIN. In these patients, aorto-iliac CT angiography using selective and limited contrast injection (10 mL of contrast) through a pigtail catheter advanced into the infrarenal abdominal aorta has been employed for several years to determine suitability for transfemoral vascular access for TAVR.

We describe a novel technique in which a second pigtail catheter is placed into the pulmonary artery (PA) at the time of pigtail catheter placement in the abdominal aorta (for selective aorto-iliac CT angiography) in the cardiac catheterization laboratory and the patient is then transferred to the CT scanner, where low-dose contrast is injected for CT angiography of the chest, abdomen, and pelvis with and without contrast (PA protocol).

The present study compares CT image quality between traditional intravenous and low-volume contrast PA protocols.

Methods

Patient population. This study is a retrospective analysis of 40 patients who underwent CT angiography with either traditional intravenous or PA protocols using a Philips Brilliance iCT 256-slice CT scanner. Consecutive patients were included, all of whom had adequate study quality. Creatinine levels were obtained at baseline and 48 hours after the procedure. CIN was defined as either a 25% increase in serum creatinine from baseline or 0.5 mg/dL (44 µmol/L) increase in absolute value, at 48-72 hours of intravenous contrast.14,15 A total of 40 mL of contrast was administered to each PA protocol patient. The comparator group comprised patients with serum creatinine <1.6 g/dL who had undergone cardiac and aorto-iliac CT imaging using the standard intravenous contrast injection protocol (80-120 mL of contrast total).4 The study was approved by the institutional review board.

Pulmonary artery (PA) protocol. Patients in the PA protocol were brought to the cardiac catheterization laboratory and were sterilely prepped and draped per our standard cardiac catheterization protocol. Vascular access was obtained in the femoral artery and vein in the standard fashion. A 5 Fr diagnostic pigtail catheter was positioned in the abdominal aorta distal to the renal arteries under fluoroscopic guidance. A PA catheter was then advanced into the PA under fluoroscopic guidance. An exchange-length, 0.25˝ J-tipped wire was advanced through the PA catheter, with removal of the PA catheter over the wire. The exchange-length wire was then used to position a 5 Fr diagnostic pigtail catheter under fluoroscopic guidance in the main PA. The catheters and sheaths were secured in position and the patient was transported for immediate CT angiography of the chest, abdomen, and pelvis using the following sequence: (1) helically acquired non-contrast CT images of the chest, abdomen, and pelvis were obtained and reconstructed at 0.9 mm slice thickness at a 0.45 mm interval with multiplanar reformats; (2) a total of 60 cc of contrast mix (30 cc Omnipaque 350 [iohexol; GE Healthcare] diluted with 30 cc normal saline) at 10 cc/s was administered through the PA catheter; (3) the interventional cardiologist responsible for the procedure removed the pigtail catheters; and (4) the arterial and venous sheaths were removed and manual pressure was applied for hemostasis.

Helically acquired images were obtained with retrospective electrocardiographic gating (without dose modulation) from the mid neck through diaphragm and reconstructed with a slice thickness of 0.9 mm and 0.45 mm spacing. The tube voltage is 120kV, and automatic current modulation is used.

Next, small field of view dedicated cardiac CTA images are reconstructed at 35%, 40%, 45%, and 75% of the R-R interval with a slice thickness of 0.9 mm and 0.45 mm spacing.

All post processing is performed on the Vitrea workstation. Measurements of the annulus are made on the systolic phase reconstruction (35%, 40%, or 45%), which subjectively shows the least motion artifact. Occasionally, measurements from the 75% reconstructed images are necessary in the event of substantial motion artifact on the systolic phase images.

Abdomen and pelvis CTA. A separate contrast injection is performed through the infrarenal aortic pigtail catheter with a total volume of 40 cc contrast mix (10 cc Omnipaque 350 diluted in 30 cc normal saline) at 10 cc/s. Helically acquired images are obtained from the upper abdomen through the pelvis and reconstructed at 0.9 mm slice thickness and 0.45 mm spacing.

Image analysis. Three-dimensional volume-rendered and maximum intensity projection (MIP) reformats were reconstructed at 0.5 mm slice thickness on the Vitrea workstation. The data were loaded into a standard multiplanar cardiac reformat package with images reconstructed in the coronal, sagittal, and transverse (axial) orientations, and then analyzed using a multiplanar oblique tool.

Intravascular CT attenuation (Hounsfield units; HU) and image noise defined as standard deviation (SD) of CT attenuation were measured by using region of interest (ROI) analysis. ROI of approximately 250 mm2 was drawn above and below the aortic valve (to avoid measurement contamination by heavily calcified leaflets). Contrast density was calculated as average of above and below the valve ROI’s end (expressed in HU). Examples of patients who underwent traditional and PA protocol are presented in Figure 1. Signal and signal-to-noise ratio (SNR) is measured below the valve. Contrast-to-noise ratio (CNR) is calculated to assess signal intensity difference between two regions (below the valve and surrounding myocardium). Based on these measurements, SNR and CNR were calculated as:16

SNR = HUbelow the valve / noise

CNR = [HUbelow the valve – HUsurrounding muscle] / noise

Aortic annulus measurement. Aortic annulus, aortic root, and LVOT assessments and measurements for prospective clinical planning for TAVR were obtained from three-dimensional volume-rendered and MIP reformats performed utilizing 3mensio Structural Heart Analysis software, version 7.1 (Pie Medical Imaging). Images from three systolic phases (35%, 40%, and 45% of R-R intervals) were analyzed, and the largest aortic annulus area and perimeter measurements were used for choosing the appropriate TAVR valve size. Rarely, motion artifact in systolic phase required analysis of the aortic annulus and aortic root based upon the 75% R-R interval diastolic phase images.

Analysis of vascular access for the prospective planning of TAVR was performed using the 3mensio Vascular Analysis Package, version 7.1 (Pie Medical Imaging). Two-dimensional and three-dimensional reconstructions of the abdominal aorta, iliac, and femoral arteries were performed to assess suitability for transfemoral artery approach.

Statistical analysis. Continuous variables are expressed as mean ± standard deviation for normal distributions and median (interquartile range [IQR]) for non-normal distributions. Normality was tested using the Shapiro-Wilk test. For the evaluation of qualitative variables, we used the Chi-Squared test. Independent-sample t-test was used to compare age, body mass index (BMI), contrast volume, average signal, signal, SNR, and CNR between two groups. Mann-Whitney U-test was performed to test for significant differences between cardiac index in two groups. Wilcoxon Signed Rank test was used to compare serum creatinine concentration before and after administration of contrast agent. Pearson’s correlation coefficient (R) or Spearman’s rank correlation coefficient (Rs) test were used to test the association of variables with normal distribution or non-normal distribution, respectively. A P-value of <.05 was considered statistically significant. Statistical analysis was performed using the SPSS 22 software program (SPS, Inc).

Results

The study consisted of 40 consecutive patients (20 in the PA group and 20 in the traditional group). The contrast volume was higher in the traditional group than in the PA group (P<.001). There were no differences in age, BMI, body surface area, or cardiac index between groups (Table 1). The average signal (P<.001), SNR (P<.01), and CNR (P=.02) were significantly higher in the traditional group vs the PA group (Table 2). The average signal in the traditional protocol was related to cardiac index (Rs = -0.773; P<.001), but not in the PA group (P=.82). Interestingly, there was a correlation between body surface area and average signal in the PA group (R= -0.528; P=.017), which was not observed in the traditional group (P=.41) (Figure 2). Aortic annulus measurement was feasible in all patients regardless of protocol. TAVR was performed successfully in all patients, with no more than mild perivalvular regurgitation. There were no complications related to the PA protocol. The median serum creatinine value in the patients undergoing PA protocol was 1.68 mg/dL (IQR, 1.58-2.24 mg/dL) before the administration of contrast and 1.81 (IQR, 1.49-2.37 mg/dL) 48 hours after the administration of contrast (difference was not statistically significant; P=.60). Only 1 of the 20 patients (5%) had an increase of at least 0.5 mg/dL in the serum creatinine concentration 48 hours after administration of the contrast agent.

Discussion

This study demonstrates the feasibility of a reduced contrast cardiac CT protocol using selective contrast injection into the PA in the planning for TAVR. The evolution of TAVR has been rapid over the last 5 years, and it is now being performed at many centers with excellent short-term and long-term outcomes.4 CT plays a central role in patient selection and evaluation prior to TAVR. CT provides accurate dimensions of the thoracoabdominal aorta and its iliofemoral branches to optimize vascular access and approach, atherosclerotic burden, anatomy of the ascending aorta, aortic root, and valve annulus, which are of critical importance in valve type and size selection.13,17 However, the use of large volumes of intravenous contrast agent in CT can lead to CIN. CIN can be seen in >10% of patients after contrast-enhanced CT.18 In high-risk patients (including those with diabetes mellitus, CKD, history of congestive heart failure, and older age), CIN has been estimated at 20%-30%.19 In our reduced contrast PA protocol group, only 1 patient (5%) with multiple risk factors developed CIN after exposure to contrast agent. On the other hand, several studies have suggested that intravenous contrast volume is less nephrotoxic than intraarterial administration.20,21PA injection seems more similar to intraarterial and might be worse than a large dose given intravenously.

CIN can be associated with prolonged hospitalization, accelerated onset of end-stage renal disease, the requirement for dialysis, increased costs, and increased mortality.22 The presence of preexisting CKD is known to be a factor predisposing patients to acute kidney injury and is associated with worse outcome following TAVR.12 The most effective means of preventing CIN involves adequate hydration by intravenous saline,23 withholding nephrotoxic medications, and, most critically, the administration of the lowest possible volume of CT contrast.24 In comparison with the traditional technique, the main advantage of our PA protocol was the use of lower contrast volume, which may decrease the incidence of CIN. Some reduction in contrast density was noted, but accurate assessment of the aortic root, aortic annulus, and LVOT for planning TAVR was still achievable. In the low-volume contrast PA protocol patients, attenuation of contrast density did not affect measurements of the ascending aorta and aortic annulus. In addition, PA technique was not sensitive to cardiac index; as such, there was no need to adjust either contrast volume or timing of contrast injection to patient cardiac index. Spagnolo et al reported the results of a study to investigate the feasibility and image quality of 64-slice CT angiography using an ultra-low-dose contrast volume in 162 patients with BMI ≤29 kg/m2 scheduled for TAVR. CT angiography of the entire aorta with a multiphasic, low-iodine dose and BMI-adapted contrast protocol (BMI <22 kg/m2: 40 mL; BMI 22-29 kg/m2: 55 mL) was performed. Image quality of the aortic root and ilio-femoral vessels was evaluated in all patients. Vascular attenuation was >200 HU at any vessel level and measurements at the aortic annulus and iliac arteries were feasible with a substantial reduction of contrast volume.25 However, this study excluded patients with BMI >29 kg/m2, in contrast with our PA protocol, in which patients were not excluded on the basis of BMI.

The principal risk of our PA protocol is its invasive nature compared with peripheral intravenous contrast injection and need for separate injection from a second pigtail catheter placed in the abdominal aorta to visualize the aorto-iliac and femoral arteries. Although the risks from PA catheterization are well described, much of the risk is related to distal PA rupture from aggressive advancement of the catheter and balloon inflation-associated PA rupture. Our technique involves positioning of the catheter over an exchange-length guidewire in the main PA and avoidance of catheter and wire advancement into the distal peripheral PA bed. Meticulous catheter and guidewire manipulation under active fluoroscopic imaging can reduce the risk of serious vascular complications. To reduce the risk of vascular complications from the arterial puncture required for aorto-iliac and femoral artery imaging, we are currently evaluating a modification of our protocol in which peripheral arteries are visualized with a single PA injection: a test bolus of 4.5 cc of contrast (10 cc total, 45% contrast/55% saline) is injected from the PA catheter. The ROI is placed in the descending aorta at the level of the carina; the typical delay is 11-24 s, and the scan starts continuously from neck to pelvis to cover the carotid arteries.

Study limitations. The limitations of our study include its retrospective nature and relatively small sample size. Although only 1 patient (5%) in our PA protocol developed CIN, our study does not address whether the reduced contrast load in the PA protocol reduces CIN when compared with the standard intravenous contrast load. We did not adjust PA contrast dose depending on body surface area, although our data suggest that CT contrast image quality in patients with higher body surface area may benefit from higher contrast volume. In the current study, we used iohexol rather than iodixanol. However, iodixanol has been demonstrated to be less nephrotoxic.26

Conclusion

Our data provide evidence that the new PA technique can be performed safely, with substantially lower volume of CT contrast and with excellent procedural outcomes, without sacrificing image quality and ability to measure aortic annulus.

References

1.    Osnabrugge RL, Mylotte D, Head SJ, et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol. 2013;62:1002-1012.

2.    Martinez-Selles M, Gomez Doblas JJ, Carro Hevia A, et al. Prospective registry of symptomatic severe aortic stenosis in octogenarians: a need for intervention. J Intern Med. 2014;275:608-620.

3.    Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:e57-e185.

4.    Holmes DR Jr, Mack MJ, Kaul S, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement: developed in collabration with the American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Failure Society of America, Mended Hearts, Society of Cardiovascular Anesthesiologists, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Thorac Cardiovasc Surg. 2012;144:e29-e84.

5.    Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609-1620.

6.    Thourani VH, Kodali S, Makkar RR, et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet. 2016;387:2218-2225. Epub 2016 Apr 3.

7.    Thyregod HG, Steinbruchel DA, Ihlemann N, et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. J Am Coll Cardiol. 2015;65:2184-2194.

8.    Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597-1607.

9.    Kapadia SR, Leon MB, Makkar RR, et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385:2485-2491.

10.    Kapadia SR, Tuzcu EM, Makkar RR, et al. Long-term outcomes of inoperable patients with aortic stenosis randomly assigned to transcatheter aortic valve replacement or standard therapy. Circulation. 2014;130:1483-1492.

11.    Kodali SK, Williams MR, Smith CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012;366:1686-1695.

12.    Rahman MS, Sharma R, Brecker SJD. Transcatheter aortic valve implantation in patients with pre-existing chronic kidney disease. IJC Heart & Vasculature. 2015;8:9-18.

13.    Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. 2012;6:366-380.

14.    Golshahi J, Nasri H, Gharipour M. Contrast-induced nephropathy; a literature review. J Nephropathology. 2014;3:51-56.

15.    Feldkamp T, Kribben A. Contrast media induced nephropathy: definition, incidence, outcome, pathophysiology, risk factors and prevention. Minerva Med. 2008;99:177-196.

16.    Geyer LL, De Cecco CN, Schoepf UJ, et al. Low-volume contrast medium protocol for comprehensive cardiac and aortoiliac CT assessment in the context of transcatheter aortic valve replacement. Academic Radiol. 2015;22:1138-1146.

17.    Jurencak T, Turek J, Kietselaer BL, et al. MDCT evaluation of aortic root and aortic valve prior to TAVI. What is the optimal imaging time point in the cardiac cycle? Eur Radiol. 2015;25:1975-1983.

18.    Mitchell AM, Jones AE, Tumlin JA, Kline JA. Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol. 2010;5:4-9. Epub 2009 Dec 3.

19.    Tepel M, Aspelin P, Lameire N. Contrast-induced nephropathy: a clinical and evidence-based approach. Circulation. 2006;113:1799-1806.

20.    Solomon R. Contrast-induced acute kidney injury: is there a risk after intravenous contrast? Clin J Am Soc Nephrol. 2008;3:1242-1243.

21.    Dong M, Jiao Z, Liu T, Guo F, Li G. Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controlled trials. J Nephrol. 2012;25:290-301.

22.    Jorgensen AL. Contrast-induced nephropathy: pathophysiology and preventive strategies. Crit Care Nurse. 2013;33:37-46.

23.    Weisbord SD, Palevsky PM. Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol. 2008;3:273-280.

24.    Azzalini L, Spagnoli V, Ly HQ. Contrast-induced nephropathy: from pathophysiology to preventive strategies. Can J Cardiol. 2016;32:247-255.

25.    Spagnolo P, Giglio M, Di Marco D, et al. Feasibility of ultra-low contrast 64-slice computed tomography angiography before transcatheter aortic valve implantation: a real-world experience. Eur Heart J Cardiovasc Imaging. 2016;17:24-33. Epub 2015 Jul 9.

26.    Chalmers N, Jackson RW. Comparison of iodixanol and iohexol in renal impairment. Br J Radiol. 1999;72:701-703.


From 1The Christ Hospital Health Network, Cincinnati, Ohio; 2Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam; 3University of Cincinnati, College of Allied Health Sciences, Cincinnati, Ohio. The research was performed at The Christ Hospital Health Network, Cincinnati, Ohio.

Disclosure: The authors have completed and returned the ICMJE Form for Disclosure of Potential Conflicts of Interest. The authors report no conflicts of interest regarding the content herein.

Manuscript submitted September 15, 2016, provisional acceptance given December 5, 2016, final version accepted February 3, 2017.

Address for correspondence: Wojciech Mazur, MD, The Christ Hospital Health Network, 2139 Auburn Avenue, Cincinnati, OH 45219. Email: mazurw@ohioheart.org


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)Fax: 913-648-0131Email: info@radpad.com

 Unknown
no-brainer-photo
Studies Support the Need for Radiation Protection for the Brain

Studies Support the Need for Radiation Protection for the Brain

Posted on May 12, 2017 by in Safety with no comments

Here we present the first of two studies regarding Rad Techs and brain cancer.  This study (3/25/2016) showed a 2.5 times greater incidence of brain cancer due to radiation exposure in the fluoro labs than to those RTs working outside the interventional suite. The study recommended ALARA and more work in this area.

This study and can be used to support the need for radiation protection for the brain.

See the original article publication here.
Read the full article below:
What’s the radiation risk to RTs from fluoro studies?

By Brian Casey, AuntMinnie.com staff writer

April 7, 2017 — Are radiologic technologists (RTs) who assist with interventional studies at higher risk of death from brain cancer? Maybe, but it’s not clear that radiation exposure is the reason why, according to a new study published March 28 in the American Journal of Roentgenology.

Researchers from a variety of institutions studied brain cancer death rates in a group of 110,000 radiologic technologists who participated in a longitudinal survey starting in 1981. While RTs who were involved in fluoroscopy had slightly higher brain cancer death rates than those who weren’t, the researchers found no relationship between the amount of radiation they were exposed to on the job and their risk of brain cancer death.

This led Cari Kitahara, PhD, of the U.S. National Cancer Institute, and colleagues to conclude that there may be other factors behind why interventional RTs have higher brain cancer rates. These could include exposure to developing chemicals used to process film or drugs and iodinated contrast agents used during fluoroscopy-guided procedures (AJR, March 28, 2017).

On-the-job exposure

A number of studies in recent years have examined the link between radiation exposure and cancer death rates in radiologic technologists, particularly interventional procedures due to their higher radiation levels compared to static studies. Researchers have focused on brain cancer mortality because interventional technologists wear lead shielding that protects other parts of the body from radiation, while the head is for the most part unprotected.

A March 2016 study by Rajaraman et al found that interventional technologists had a mortality risk from malignant intracranial neoplasms that was 2.5 times higher compared to RTs who never assisted with fluoroscopy procedures. The current study used the same cohort as the Rajaraman study, but it was designed to assess whether there was a relationship between brain cancer mortality rates and the amount of radiation technologists were exposed to during their work histories.

Kitahara and colleagues analyzed data from the U.S. Radiologic Technologists Study, which began in the 1980s with a cohort of 146,022 technologists who were working in the field at the time, some having started their careers as early as 1926. The technologists received four surveys between 1983 and 2014 that asked various questions regarding work history and practices, medical history, and other issues.

Kitahara’s group used data from technologists who responded to the first or second cohort surveys (or both); this consisted of 83,655 female and 26,642 male technologists. To be included in the study, estimates of annual and cumulative radiation doses to the brain must have been performed for the individuals.

Dose estimates were derived from badge measurements for 72% of the study cohort members between 1960 and 1997, as well as detailed work histories of procedures and protection practices from the first three cohort surveys. The researchers used historical data and dose estimates for the years before 1960 when dosimetry badges weren’t yet available.

Kitahara and colleagues then tracked various demographic characteristics, lifestyle factors, and medical and work histories, including a history of working with fluoroscopy-guided imaging procedures. Finally, they tracked the number of cases of brain cancer that occurred in the subjects.

Over a median follow-up period of 26.7 years, 193 technologists who assisted with fluoroscopically guided procedures died of malignant brain tumors, the researchers found. Individuals in the group had a cumulative mean absorbed brain dose of 12 mGy.

Like Rajaraman et al, Kitahara’s group found a higher relative risk of brain cancer mortality among technologists who assisted with fluoroscopy compared to those who didn’t. But the relationship was not as strong: The new study found that those who were exposed to fluoroscopy procedures had a relative risk of brain cancer mortality of 1.7 compared to technologists who didn’t do fluoroscopy. This compared to a risk of 2.5 in the Rajaraman research. (The Kitahara study followed technologists for an additional four years compared to the previous research.)

Their next question was whether the technologists who received a higher radiation dose experienced a higher rate of brain cancer mortality. The answer was no: Kitahara and colleagues found an excess relative risk for brain cancer mortality of 0.1 per 100 mGy of exposure, just slightly above the rating of 0 that would indicate no association.

“We found no evidence of a dose-response association between cumulative protracted occupational radiation and malignant intracranial tumor mortality,” they wrote.

The researchers noted that the statistical power of their study may have been too limited to identify a positive relationship between radiation dose and mortality, given the relatively small number of cancer deaths and the low range of estimated radiation dose.

But they also postulated that the higher rate of brain tumor deaths found in both the Rajaraman and Kitahara studies could be due to factors other than radiation in the work environment of technologists who assist with interventional radiology

For example, technologists assisting with fluoroscopy-guided procedures continued to perform photographic subtraction angiography in darkrooms through the 1980s, whereas technologists working with static radiographs stopped working with open film tanks in the 1960s, they noted. Film-processing chemicals have been associated with a wide range of health maladies.

Fluoroscopy technologists are also exposed to a variety of drugs and iodinated contrast agents at a higher rate than other RTs, although the authors pointed out that a connection between such chemicals and brain tumor development has not yet been established.

In the end, Kitahara and colleagues noted that their findings are in line with other studies on exposure to low and moderate doses of radiation, which have not established a link between exposure levels and brain cancer mortality in adults.

They advised additional studies in the future, such as examining the association between protracted radiation exposure and benign brain tumor incidence in the same cohort.


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)

Fax: 913-648-0131

Email: info@radpad.com

Unknown

 


RADPAD-scatter-radiation-protectio
RADPAD Glossary of Some Common Interventional Techniques

RADPAD Glossary of Some Common Interventional Techniques

Posted on April 21, 2017 by in Uncategorized with no comments

5511-used-in-abdominal-procedure-thumb

Radiology is the branch of medical science that has seen a major boost in the past few years. With more and more doctors learning interventional techniques for radiology, it has become important that you get familiar with some of the glossary terms related to this technology.

Central Venous Access

This is one method that is used to insert nutrients or blood in the blood vessels of the patient. The needle is inserted just beneath the skin and also used to provide medication of any kind to the patients.

Bleeding internally

Unlike in the past, interventional radiologists can easily pinpoint the area of internal bleeding with angioplasty. This has helped a lot in the operations that need to be performed after a person has sustained a severe accident. When the point of bleeding is discovered, the required blood clotting substance, gel, foam or tiny coils can be inserted with the help of a thin catheter that stop the bleeding.

Balloon Angioplasty

One of the most effective methods to open up clogged arteries in the legs, brains, arms, kidneys or anywhere in the body is balloon angioplasty. A very small balloon is inserted into the vessel and inflated to open it.

Biliary Drainage and Stenting

Excess bile in the liver can cause problems; the biliary drainage method is used to extract it. A stent is a small mesh tube that is used to open up blocked ducts and allow the bile to drain out.

Angiography

This is one of the superior X-ray exams that help in seeking out blockages and other blood vessel problems in the body. A catheter and a contrast agent (X-ray dye) are used to ensure the visibility of the artery.

Arteriovenous Malformations (AVM)

One of the biggest threats that can lead to internal bleeding and take lives is blood vessel abnormality. It can occur anywhere in the body. For this reason, arteriovenous malformations need to be treated properly. Interventional radiologists can treat this problem by inserting a catheter into the site of the bleeding.

Embolization

This is the process through which the clotting agent is delivered directly to the bleeding area in cases like an aneurysm or a fibroid tumor in the uterus. The clotting agents are the coils, plastic particles, gels, foams, and other materials.

High Blood Pressure

The problem of renal hypertension occurs due to the narrowing of the arteries in the kidneys. This problem leads to an increase in blood pressure. It can be easily treated with angioplasty.

Gastrostomy Tube

This is the tube that is inserted into the stomach of patients who are unable eat food usings their mouths.

Chemoembolization

Cancer is becoming curable, and the cancers of the endocrine system and the liver can be treated with this method. In this method of Chemoembolization, cancer-fighting agents are directly delivered to the site of the tumor of the cancer.

Needle Biopsy 

This is a great alternative to a surgical biopsy. The needle biopsy is used as a diagnostic test for breast, lung and other cancers.


Worldwide Innovations & Technologies, Inc. 

14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown

 

RADPAD-radiation-protection
RADPAD® Attends SIR 2017 Annual Scientific Meeting in Washington DC

RADPAD® Attends SIR 2017 Annual Scientific Meeting in Washington DC

Posted on March 24, 2017 by in Uncategorized with no comments

The Society of Interventional Radiology

SIR is a national organization of physicians, scientists and allied health professionals dedicated to improving public health through disease management and minimally invasive, image-guided therapeutic interventions.

SIRBanner2017-1


RADPAD at SIR 2017 

RADPAD-radiation-protectionD2A089EF-1A2C-41B3-B37E-930F888F1E92

 

Goals of the SIR 2017 Annual Scientific Meeting

It is SIR’s goal to promote the high-quality practice of interventional radiology through this and other educational programs. Meeting attendees will receive the latest information in basic and clinical research; experience techniques and technologies utilized by interventional radiologists around the world; see the latest equipment used in IR; and discuss social, political and economic issues important to the IR community.

 

SIR 2017 ANNUAL SCIENTIFIC MEETING OBJECTIVES

At the end of this meeting the learner should be able to:

1. Demonstrate the high-quality practice of interventional radiology in a team environment

2. Illustrate the latest information regarding basic and clinical research in diseases, including techniques and technologies integral to the practice of interventional radiology

3. Evaluate the latest equipment developed for interventional radiology procedures

4. Discuss societal, political and economic issues of importance to the interventional radiology community

 

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)Fax: 913-648-0131

Email: info@radpad.com

Follow RADPAD® on Facebook
Unknown

WIT Wins Business Award: 25 Under 25®

Posted on February 10, 2017 by in Other Stories with no comments

Worldwide Innovations & Technologies, Inc. Has Won the 25 Under 25® Award

2016AwardsLookingDown_25U25

“Small businesses are a powerful, but often overlooked force in Kansas City,” said Kelly Scanlon, CEO of Thinking Bigger Business Media and the creator of 25 Under 25®.

“Together, these companies employ thousands upon thousands of people, deliver innovative products and services, and help support our government, schools, nonprofits and other public resources. Of course, most of our winners are too humble and too busy to brag about their contributions. But it’s a story that needs to be told. The 25 Under 25® Awards are proud to celebrate the important service of small businesses.”

 

About the 25 Under 25® Awards

As part of its 10-year anniversary celebration in 2002, Thinking Bigger Business Media Inc. launched the annual 25 Under 25® Awards to recognize 25 outstanding Kansas City businesses with under 25 employees.

Until the 25 Under 25® Awards, no formal recognition program existed in the Kansas City area that specifically targeted businesses with fewer than 25 employees. Yet this segment of business comprises the largest number of companies both locally and nationally, with roughly 83 percent of Kansas City area and 86 percent of businesses nationwide employing 19 or fewer employees.

With the establishment of the 25 Under 25® Awards program, small businesses are being recognized for the significant role they play in the Kansas City economy. The 25 Under 25® Awards program is not just about honoring individual businesses—it’s also about opening the public’s eyes to the economic, social and community impact of small businesses.

 

Honorees

December 7, 2016

Thinking Bigger Business Media is proud to announce the honorees of the 16th annual 25 Under 25® Awards—a group that represents the best of Kansas City’s small business community.

The awards are presented to 25 local businesses with fewer than 25 employees. An independent panel of judges consisting of area business leaders chooses the winning companies. Nearly 1,500 nominations were submitted. This year’s honorees include:

 

More info on the awards and the award reception here: https://ithinkbigger.com/events/25-under-25/

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)

Fax: 913-648-0131

Email: info@radpad.com

Follow RADPAD® on Facebook
Unknown

RAPDAD Scatter Radiation Shields Protection during Vascular Surgery

Posted on January 20, 2017 by in Products, Safety with no comments

RADPAD-scatter-radiation-protectio

When people go through vascular surgery, scatter radiation occurs. Scatter radiation was inevitable in the past. But with today’s new technology at our disposal, we can protect ourselves from scatter radiation and get results. The most prominent target for scatter radiation are the patients themselves and then the physicians who care for them. Let us look at the different ways we can avoid scatter radiation.

Interventional Peripheral Shields

Interventional Peripheral Shields are used during vascular surgery and cardiothoracic surgery. The shields provide the physician with added length that helps him work on the entire length. The shade is what comes handy and helps in avoiding scatter radiation. There are a lot of fluids used in this process and this is the reason why it is available in absorbent covering.

The shields provide excellent protection during AAA (Abdominal Aortic Aneurysm) and TAVR (Transcatheter Aortic Valve replacement) procedures. During these procedures the physician is required on both sides and thus the protection is also available on two sides.

Why do we need Protection from Scatter Radiation?

Is it inevitable? Why do we need protection against scatter radiation? The simple reason is that all radiation is harmful and there is more than one person present for a surgery. The nurses and the doctors along with the patient are potentially at risk. This is the reason why we need to have protection against scatter radiation.

And this is why RADPAD is inventing and manufacturing better shields that drastically reduce the radiation in every interventional procedure. It is available from 50% to 95% at 90kVp.

Some shields are designed specifically for absorbing radiation in certain zones. This helps in giving the physicians a place where they can safely work where the radiation won’t affect them at all.

Moreover, there are safety regulations for the doctors that state the radiation exposure to the doctors and other personnel should be as low as reasonably achievable (ALARA). This makes the use of RADPAD shields even more important in every operation theater.

So, now you know what kind of RADPAD shields can be used to protect a physician and their team from harmful scatter radiations. When everyone is protected, then surgeons can focus on what’s important; operating on their patients. Get these RADPAD shields for your company today.

Page 1 of 41234