1-877-7RADPAD     info@radpad.com

Tag: antegrade access

RADPAD-scatter-radiation-protectio
RADPAD Glossary of Some Common Interventional Techniques

RADPAD Glossary of Some Common Interventional Techniques

Posted on April 21, 2017 by in Uncategorized with no comments

5511-used-in-abdominal-procedure-thumb

Radiology is the branch of medical science that has seen a major boost in the past few years. With more and more doctors learning interventional techniques for radiology, it has become important that you get familiar with some of the glossary terms related to this technology.

Central Venous Access

This is one method that is used to insert nutrients or blood in the blood vessels of the patient. The needle is inserted just beneath the skin and also used to provide medication of any kind to the patients.

Bleeding internally

Unlike in the past, interventional radiologists can easily pinpoint the area of internal bleeding with angioplasty. This has helped a lot in the operations that need to be performed after a person has sustained a severe accident. When the point of bleeding is discovered, the required blood clotting substance, gel, foam or tiny coils can be inserted with the help of a thin catheter that stop the bleeding.

Balloon Angioplasty

One of the most effective methods to open up clogged arteries in the legs, brains, arms, kidneys or anywhere in the body is balloon angioplasty. A very small balloon is inserted into the vessel and inflated to open it.

Biliary Drainage and Stenting

Excess bile in the liver can cause problems; the biliary drainage method is used to extract it. A stent is a small mesh tube that is used to open up blocked ducts and allow the bile to drain out.

Angiography

This is one of the superior X-ray exams that help in seeking out blockages and other blood vessel problems in the body. A catheter and a contrast agent (X-ray dye) are used to ensure the visibility of the artery.

Arteriovenous Malformations (AVM)

One of the biggest threats that can lead to internal bleeding and take lives is blood vessel abnormality. It can occur anywhere in the body. For this reason, arteriovenous malformations need to be treated properly. Interventional radiologists can treat this problem by inserting a catheter into the site of the bleeding.

Embolization

This is the process through which the clotting agent is delivered directly to the bleeding area in cases like an aneurysm or a fibroid tumor in the uterus. The clotting agents are the coils, plastic particles, gels, foams, and other materials.

High Blood Pressure

The problem of renal hypertension occurs due to the narrowing of the arteries in the kidneys. This problem leads to an increase in blood pressure. It can be easily treated with angioplasty.

Gastrostomy Tube

This is the tube that is inserted into the stomach of patients who are unable eat food usings their mouths.

Chemoembolization

Cancer is becoming curable, and the cancers of the endocrine system and the liver can be treated with this method. In this method of Chemoembolization, cancer-fighting agents are directly delivered to the site of the tumor of the cancer.

Needle Biopsy 

This is a great alternative to a surgical biopsy. The needle biopsy is used as a diagnostic test for breast, lung and other cancers.


Worldwide Innovations & Technologies, Inc. 

14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown

 

RAPDAD Scatter Radiation Shields Protection during Vascular Surgery

Posted on January 20, 2017 by in Products, Safety with no comments

RADPAD-scatter-radiation-protectio

When people go through vascular surgery, scatter radiation occurs. Scatter radiation was inevitable in the past. But with today’s new technology at our disposal, we can protect ourselves from scatter radiation and get results. The most prominent target for scatter radiation are the patients themselves and then the physicians who care for them. Let us look at the different ways we can avoid scatter radiation.

Interventional Peripheral Shields

Interventional Peripheral Shields are used during vascular surgery and cardiothoracic surgery. The shields provide the physician with added length that helps him work on the entire length. The shade is what comes handy and helps in avoiding scatter radiation. There are a lot of fluids used in this process and this is the reason why it is available in absorbent covering.

The shields provide excellent protection during AAA (Abdominal Aortic Aneurysm) and TAVR (Transcatheter Aortic Valve replacement) procedures. During these procedures the physician is required on both sides and thus the protection is also available on two sides.

Why do we need Protection from Scatter Radiation?

Is it inevitable? Why do we need protection against scatter radiation? The simple reason is that all radiation is harmful and there is more than one person present for a surgery. The nurses and the doctors along with the patient are potentially at risk. This is the reason why we need to have protection against scatter radiation.

And this is why RADPAD is inventing and manufacturing better shields that drastically reduce the radiation in every interventional procedure. It is available from 50% to 95% at 90kVp.

Some shields are designed specifically for absorbing radiation in certain zones. This helps in giving the physicians a place where they can safely work where the radiation won’t affect them at all.

Moreover, there are safety regulations for the doctors that state the radiation exposure to the doctors and other personnel should be as low as reasonably achievable (ALARA). This makes the use of RADPAD shields even more important in every operation theater.

So, now you know what kind of RADPAD shields can be used to protect a physician and their team from harmful scatter radiations. When everyone is protected, then surgeons can focus on what’s important; operating on their patients. Get these RADPAD shields for your company today.

alternate access for CTOs by RADPAD
RADPAD CLI Perspectives: Alternative Access for CTOs in CLI

RADPAD CLI Perspectives: Alternative Access for CTOs in CLI

Posted on September 12, 2016 by in Procedures with no comments

Last year, Cath Lab Digest published an interview covering alternative access for chronic total occlusions in critical limb ischemia. J.A. Mustapha, MD, interviewed Andrej Schmidt, MD, Department of Angiology, Leipzig Heart Center, Leipzig, Germany. 

Read the full article below or click the link for the original publicaiton:

http://www.cathlabdigest.com/article/CLI-PERSPECTIVES-Alternative-Access-CTOs-CLI

 


CLI PERSPECTIVES: Alternative Access for CTOs in CLI

Author(s):

CLI Perspectives is headed by section editor J.A. Mustapha, MD, 

Metro Health Hospital, Wyoming, Michigan. 

 

Topics:
Access
Critical limb ischemia
Chronic total occlusions (CTO)
Issue Number:
Volume 23 – Issue 2 – February, 2015

 

 

 

J. Mustapha: What is your preferred access method for crossing complex superficial femoral artery (SFA) CTOs, with the exception of ostial SFA disease?

A. Schmidt: Most SFA CTO crossing is performed via ipsilateral antegrade approach.

 

 

J. Mustapha: Why do you prefer an ipsilateral antegrade approach?

A. Schmidt: For multiple beneficial reasons, including shortening the distance from the access site to the CTO, enhancement of pushability, and much better wire and catheter torque.

 

J. Mustapha: Do you ever perform a contralateral access approach for SFA CTOs?

 

A. Schmidt: Yes, mostly in patients who are not good candidates for antegrade access such as obese patients, those with proximal disease, ostial SFA disease, or CTOs. Mostly, I prefer antegrade access for SFA CTOs.

 

J. Mustapha: Many of us have seen you perform live cases and have witnessed your excellent techniques in retrograde popliteal and SFA access in complex CTO crossing. Why do you access these segments?

A. Schmidt: We access distal to the CTO cap of the SFA or popliteal CTO only when we fail to cross from antegrade approach first. The reason we access close to the CTO is similar to the reasoning of the antegrade access, close to the CTO cap, which in turns helps with retrograde pushability and torqueability.

J. Mustapha: What advice would you give practitioners who would like to perform similar retrograde access in the SFA/popliteal?

A. Schmidt: Proceed with caution, as this should only be attempted after an antegrade approach fails.  Be sure to have a balloon across the occluded target lesion and the guidewire across the distal access before taking the access catheter out, so that in case a problem (dissection, occlusion) occurs at the distal entrance, balloon angioplasty can be done to fix it. Hemostasis is principally done by external compression.

 

 

J. Mustapha: What is the average time of your balloon inflation?

A. Schmidt: The time depends on the size of the access catheter or the sheath used. Most of the time, we use the smallest catheter possible, .018-inch to .035-inch.  Therefore, we perform a three-minute balloon inflation followed by an angiogram.

 

J. Mustapha: Is this the same for a stick in a stent vs no stent?

A. Schmidt: Yes.

 

J. Mustapha: Do you worry about harming the stent after getting access in it?

A. Schmidt: No. So far, in our experience, we have not had any issues with stents in these situations. Keep in mind, we only get an access in the stent in extreme cases and place the smallest catheter possible.

J. Mustapha: Moving to retrograde tibial access, which access method do you use to enter the artery, angiogram-guided or ultrasound-guided?

A. Schmidt: We use angiogram-guided access.

 

J. Mustapha: Which is your preferred tibial artery for retrograde access and which part of the artery do you like to enter?

A. Schmidt: My preferred artery is the anterior tibial artery and I prefer to enter it proximally.

 

J. Mustapha: Why proximal versus distal?

A. Schmidt: Proximally, because the vessel diameter is larger and accommodates a 4 French sheath if needed.

 

J. Mustapha: How do you get the access?

A. Schmidt: First we position the foot supine and support it with a rolled-up towel, then perform an angiogram in left oblique 30° view, and enter the needle thru the skin into the artery. If no blood returns, we perform an oblique view with repeat angiogram which helps show the tip of the needle and artery.

 

J. Mustapha: How do you obtain hemostasis after the proximal tibial access?

A. Schmidt: Most of the time, we use an external blood pressure cuff.  Occasionally, we use an intra-arterial balloon.

 

J. Mustapha: If needed, what are your tips and tricks for getting distal tibial access?

A. Schmidt: Starting with the dorsalis pedis access, foot positioning is important. First we position the foot supine and support it with a rolled-up towel, then the C-arm is positioned at about 15° ipsilateral and 10° cranial. We then use the quick access needle holder, followed with an angiogram. Also, we can puncture and perform contrast injection simultaneously, as needed.

 

J. Mustapha: Do you recommend road mapping for tibial access?

A. Schmidt: No, side movements of the artery due to puncture needles are not noticed, which may lead to accidental venous access and failed attempts. Also, I don’t recommend coming in from a lateral approach.

 

J. Mustapha: How do you know your needle is in line with the artery?

A. Schmidt: After angiogram is done, make the needle form one line with the artery (Figure 1A-B).

 

J. Mustapha: What do you do in the setting of no blood return?

A. Schmidt: Obtain oblique orthogonal views at 55-65°, load the guidewire into the needle, and perform contrast injection via the proximal sheath and pull back very slowly. Keep testing if the guidewire makes it through. Another method is to pull back slowly and inject contrast from the needle holder until you see contrast in the artery, then advance the guidewire (Figure 2A-G).

 

J. Mustapha: Any tips on how to get peroneal access?

A. Schmidt: Start with an anterior approach. Place the C-arm at ipsilateral LAO 30° (Figure 3A), perform antegrade angiogram, and position the needle in line with the artery.  If no success, then move the C-arm to right anterior oblique (RAO) 70° (Figure 3B) and repeat angiogram. Redirect the needle toward the artery, puncturing the peroneal artery through the membrana interossea.

 

J. Mustapha: Which puncture site is safer?

A. Schmidt: The distal tibial access approach is safer, as it is not associated with compartment syndrome.

 

J. Mustapha: What needles to you use for proximal and distal tibial access?

A. Schmidt: For proximal anterior tibial, posterior tibial, and peroneal access, we use a 7cm, 21g needle. For distal tibials, we use a 4cm, 21g needle.

 

J. Mustapha: Please advise what NOT to do in infrapopliteal retrograde access.

A. Schmidt: One should not access communication arteries, especially those off of the peroneal artery, as shown in Figure 4.

 

J. Mustapha: How do you minimize radiation exposure?

A. Schmidt: My angiographical approach to retrograde pedal and tibial puncture is quick and precise, minimizing radiation exposure. I attribute this to experience and the right equipment (Figure 5A). I wear a ring dosimeter (Figure 5B) to measure my exposure.

Disclosure: Dr. Mustapha reports he is a consultant to Bard Peripheral Vascular, Covidien, Cordis, CSI, Spectranetics, and Boston Scientific. Dr. Schmidt reports occasional consulting for Bard and Medtronic.

Dr. Andrej Schmidt and Dr. J.A. Mustapha can be contacted at jihad.mustapha@metrogr.org

 

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)

 

14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Follow RADPAD® on Facebook
Unknown