1-877-7RADPAD     info@radpad.com

Tag: Heavy Lead Aprons

RADPAD® Safety News:  Radiation Exposure in Cath Lab Depends on Shield Placement

RADPAD® Safety News: Radiation Exposure in Cath Lab Depends on Shield Placement

Posted on February 19, 2018 by in Safety with no comments

MedPage Today and the American Heart Association collaborated on an insightful article explaining the importance of shield placement in the reduction of scatter radiation exposure:

 

MEDPAGE TODAY ®

Cardiology

Radiation Exposure in Cath Lab Depends on Shield Placement

by Chris Kaiser

Cardiology Editor, MedPage Today October 17, 2011

 

This article is a collaboration between MedPage Today® and:

Screen Shot 2018-02-19 at 2.07.31 PMlife is why

Interventional cardiologists are at greatest risk of scatter radiation exposure compared with other personnel in the cath lab, but their risk can be significantly reduced with the optimal placement of radiation shielding, researchers found.

A ceiling-mounted upper body shield protected best from scatter radiation when it was positioned tight to the patient’s body and just toward the head from the femoral access point, reported Kenneth A. Fetterly, PhD, from the Mayo Clinic in Rochester, Minn., and colleagues.

However, a difference of 5 cm away from the patient’s body and 20 cm closer to the x­ ray tube resulted in a fourfold reduction in protection, according to the study in Oct. 25 Journal of the American College of Cardiology: Cardiovascular Interventions.

“That the most advantageous shield positioning can have a greater than fourfold relative reduction in scatter radiation exposure, supports its use even when inconvenient, and suggests that learning to coordinate multiple shields should be among the fundamental principles taught in every interventional cardiology training program,” wrote Lloyd W. Klein, MD, and Justin Maroney, MD, from Advocate Illinois Masonic Medical Center in Chicago, in an accompanying editorial.

Klein and Maroney noted that the design of the interventional suite has remained stagnant over the past few decades even as innovations in techniques and devices have soared. And because optimal placement of shielding “continues to be operator­ dependent,” it requires a deliberate effort on the part of cath lab personnel to place shield s.

To determine how best to protect against scatter radiation, which occurs when the primary x-ray beam interacts with patient tissue and changes direction, investigators tested four different shielding models individually and in com binat ion:

 

  • A ceiling-mounted upper body shield

 

  • A table side rail-mounted lower body shield

 

  • An accessory vertical shield that mounts as an upper extension of the lower body shield

 

  • A disposable radiation-absorbing pad

 

Researchers used anthropomorphic phantoms through which they directed the x-ray beam in a straight posterior-anterior posit ion.

They measured the scatter radiation from three common physician positions corresponding to standard right femoral art ery, right jugular vein, and left anterior thoracic access point s.

Results showed that maximum protection was provided at the femoral artery access position compared with the other two access points.

When the ceiling-mounted upper body shield was moved away from the patient’s body by 5 cm, and moved more cephalad from the femoral access point by 20 cm, the protective benefit to the middle and upper body went from greater than 80% to less than 20%.

The accessory vertical extension to the lower body shield provided between 25% and 90% additional protection at heights in the range of 100 cm to 150 cm. The disposable pad also provided extra upper body protection, in the range of 55% to 70%.

Researchers found that the combined use of the table apron with vertical extension and the upper body shield resulted in “at least 80% protection at all elevations and 90% protection for elevations below 150 cm” at the femoral access point.

Regarding protection from the right jugular vein and left anterior thoracic access points, testing showed that the lower body shield provided better than 90% reduction in scatter exposure, but no upper body protection, while the disposable pad provided lower body protection and only modest upper body protection (between 40% to 70%).

The upper body shield also interfered with the x-ray receptor and patient access when the right jugular vein access point was used, and it interfered with patient access from the anterior thoracic access point. Patient interference was common with the vertical extension as well.

“A major finding of this work is that the upper body protection provided by the ceiling­ mounted upper body shield is highly dependent on precise positioning,” researchers wrote.

“Note that conventional wisdom is that shields should be placed close to the source of radiation to maximize the size of the protective ‘radiation shadow’ of the shield. Properly positioning the upper body shield requires the opposite mindset,” Fetterly and colleagues said.

Klein and Maroney echoed this sentiment, saying the shield should be used “as one would use an umbrella in wind-driven rain: the closer to the operator’s body the more eff ect ive.”

Limitations of the study included the use of only the posterior-anterior projections, and the lack of an analysis of radiation scatter when involved with the treatment of abdominal and peripheral vessels.

 

The study authors and the editorialists reported relationships relevant to the contents of the study or editorial.

 Reviewed by Zalman S. Agus, MD Em er itus Professor

University of Pennsylvania School of Medicine and Dorothy Caputo, MA, RN , BC-ADM, CDE, Nurse Planner 

Primary Source

JACC: Cardiovascular Interventions

Source Reference: Fetterly, KA et al “Effective use of radiation shields to minimize operator dose during invasive cardiology procedures” J Am Coll Cardiol Intv 2011; 4: 1133-1139.

Secondary Source

JACC: Cardiovascular Interventions

Source Reference : Klein LW, et al “Optimizing operator protection by proper radiation shield positioning in the interventional cardiology suite” J Am Coll Cardiol Intv 2011;4:1140-1141.


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730 or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown

 

RADPAD Safety News: Low Doses of Radiation Could Harm Cardiovascular Health

Posted on August 31, 2017 by in Safety with no comments

It is known that populations exposed to ionizing radiation in medical or environmental settings have symptoms suggesting an increased risk of cardiovascular disease. However, this research study suggests that low exposure to doses of around 0.5 Gy (the equivalent of repeated CT scans) is associated with a significantly increased risk of cardiovascular damage, up to decades after exposure. This raises questions about the nature of long-term alterations in the heart’s vascular system caused by such doses.”

For more about this study read the article below, originally published by Diagnostic and Interventional Cardiology:


NEWS | RADIATION DOSE MANAGEMENT | JULY 17, 2017

Low Doses of Radiation Could Harm Cardiovascular Health

New study suggests dose of 0.5 Gy associated with significantly increased risk of cardiovascular damage as long as decades after exposure. 

Low Doses of Radiation Could Harm Cardiovascular Health

July 17, 2017 — Ionizing radiation, such as X-rays, has a harmful effect on the cardiovascular system even at doses equivalent to recurrent computed tomography (CT) imaging, a new study published in the International Journal of Radiation Biology suggests.

It is known that populations exposed to ionizing radiation in medical or environmental settings have symptoms suggesting an increased risk of cardiovascular disease. However, this research study suggests that low exposure to doses of around 0.5 Gy (the equivalent of repeated CT scans) is associated with a significantly increased risk of cardiovascular damage, up to decades after exposure. This raises questions about the nature of long-term alterations in the heart’s vascular system caused by such doses.

Soile Tapio, M.D., and Omid Azimzadeh, M.D., of Helmholtz Zentrum München, German Research Center for Environmental Health, and colleagues studied how human coronary artery endothelial cells respond to a relatively low radiation dose of 0.5 Gy and found several permanent alterations in the cells that had the potential to adversely affect their essential functions.

Endothelial cells, which form the inner layer of blood vessels, were found to produce reduced amounts of nitric oxide, an essential molecule in several physiological processes including vascular contraction. Previously, high-dose radiation (16 Gy) has been shown to persistently reduce levels of nitric oxide in the serum of mice, but this is the first study to indicate impaired nitric oxide signaling at much lower doses.

Cells damaged by low-dose radiation also produced increased amounts of reactive oxygen species (ROS), which are formed as a natural byproduct of normal oxygen metabolism and play an important role in cell signaling. Increased ROS can damage DNA and proteins.

In addition, exposed cardiac endothelial cells were found to have reduced capacity to degrade oxidized proteins and to be aging prematurely. Such harmful changes did not occur immediately (that is, within a day) but first began in the longer term (one to two weeks). As these cells do not divide rapidly in the body, this observed time in the cell culture would correspond to several years in the living organism.

All these molecular changes are indicative of long-term premature dysfunction and suggest a mechanistic explanation to the epidemiological data showing increased risk of cardiovascular disease after low-dose radiation exposure, the authors concluded.

 


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730 or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Unknown
Studies Support the Need for Radiation Protection for the Brain

Studies Support the Need for Radiation Protection for the Brain

Posted on May 12, 2017 by in Safety with no comments

Here we present the first of two studies regarding Rad Techs and brain cancer.  This study (3/25/2016) showed a 2.5 times greater incidence of brain cancer due to radiation exposure in the fluoro labs than to those RTs working outside the interventional suite. The study recommended ALARA and more work in this area.

This study and can be used to support the need for radiation protection for the brain.

See the original article publication here.
Read the full article below:
What’s the radiation risk to RTs from fluoro studies?

By Brian Casey, AuntMinnie.com staff writer

April 7, 2017 — Are radiologic technologists (RTs) who assist with interventional studies at higher risk of death from brain cancer? Maybe, but it’s not clear that radiation exposure is the reason why, according to a new study published March 28 in the American Journal of Roentgenology.

Researchers from a variety of institutions studied brain cancer death rates in a group of 110,000 radiologic technologists who participated in a longitudinal survey starting in 1981. While RTs who were involved in fluoroscopy had slightly higher brain cancer death rates than those who weren’t, the researchers found no relationship between the amount of radiation they were exposed to on the job and their risk of brain cancer death.

This led Cari Kitahara, PhD, of the U.S. National Cancer Institute, and colleagues to conclude that there may be other factors behind why interventional RTs have higher brain cancer rates. These could include exposure to developing chemicals used to process film or drugs and iodinated contrast agents used during fluoroscopy-guided procedures (AJR, March 28, 2017).

On-the-job exposure

A number of studies in recent years have examined the link between radiation exposure and cancer death rates in radiologic technologists, particularly interventional procedures due to their higher radiation levels compared to static studies. Researchers have focused on brain cancer mortality because interventional technologists wear lead shielding that protects other parts of the body from radiation, while the head is for the most part unprotected.

A March 2016 study by Rajaraman et al found that interventional technologists had a mortality risk from malignant intracranial neoplasms that was 2.5 times higher compared to RTs who never assisted with fluoroscopy procedures. The current study used the same cohort as the Rajaraman study, but it was designed to assess whether there was a relationship between brain cancer mortality rates and the amount of radiation technologists were exposed to during their work histories.

Kitahara and colleagues analyzed data from the U.S. Radiologic Technologists Study, which began in the 1980s with a cohort of 146,022 technologists who were working in the field at the time, some having started their careers as early as 1926. The technologists received four surveys between 1983 and 2014 that asked various questions regarding work history and practices, medical history, and other issues.

Kitahara’s group used data from technologists who responded to the first or second cohort surveys (or both); this consisted of 83,655 female and 26,642 male technologists. To be included in the study, estimates of annual and cumulative radiation doses to the brain must have been performed for the individuals.

Dose estimates were derived from badge measurements for 72% of the study cohort members between 1960 and 1997, as well as detailed work histories of procedures and protection practices from the first three cohort surveys. The researchers used historical data and dose estimates for the years before 1960 when dosimetry badges weren’t yet available.

Kitahara and colleagues then tracked various demographic characteristics, lifestyle factors, and medical and work histories, including a history of working with fluoroscopy-guided imaging procedures. Finally, they tracked the number of cases of brain cancer that occurred in the subjects.

Over a median follow-up period of 26.7 years, 193 technologists who assisted with fluoroscopically guided procedures died of malignant brain tumors, the researchers found. Individuals in the group had a cumulative mean absorbed brain dose of 12 mGy.

Like Rajaraman et al, Kitahara’s group found a higher relative risk of brain cancer mortality among technologists who assisted with fluoroscopy compared to those who didn’t. But the relationship was not as strong: The new study found that those who were exposed to fluoroscopy procedures had a relative risk of brain cancer mortality of 1.7 compared to technologists who didn’t do fluoroscopy. This compared to a risk of 2.5 in the Rajaraman research. (The Kitahara study followed technologists for an additional four years compared to the previous research.)

Their next question was whether the technologists who received a higher radiation dose experienced a higher rate of brain cancer mortality. The answer was no: Kitahara and colleagues found an excess relative risk for brain cancer mortality of 0.1 per 100 mGy of exposure, just slightly above the rating of 0 that would indicate no association.

“We found no evidence of a dose-response association between cumulative protracted occupational radiation and malignant intracranial tumor mortality,” they wrote.

The researchers noted that the statistical power of their study may have been too limited to identify a positive relationship between radiation dose and mortality, given the relatively small number of cancer deaths and the low range of estimated radiation dose.

But they also postulated that the higher rate of brain tumor deaths found in both the Rajaraman and Kitahara studies could be due to factors other than radiation in the work environment of technologists who assist with interventional radiology

For example, technologists assisting with fluoroscopy-guided procedures continued to perform photographic subtraction angiography in darkrooms through the 1980s, whereas technologists working with static radiographs stopped working with open film tanks in the 1960s, they noted. Film-processing chemicals have been associated with a wide range of health maladies.

Fluoroscopy technologists are also exposed to a variety of drugs and iodinated contrast agents at a higher rate than other RTs, although the authors pointed out that a connection between such chemicals and brain tumor development has not yet been established.

In the end, Kitahara and colleagues noted that their findings are in line with other studies on exposure to low and moderate doses of radiation, which have not established a link between exposure levels and brain cancer mortality in adults.

They advised additional studies in the future, such as examining the association between protracted radiation exposure and benign brain tumor incidence in the same cohort.


CONTACT US

Send inquiries to info@radpad.com for a free No Brainer™ sample. The No Brainer™ blocks up to 95% of radiation exposure to the brain. Lightweight, adjustable protection for all O.R. suite and fluoro lab personnel during interventional procedures.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)

Fax: 913-648-0131

Email: info@radpad.com

Unknown

 


WIT Wins Business Award: 25 Under 25®

Posted on February 10, 2017 by in Other Stories with no comments

Worldwide Innovations & Technologies, Inc. Has Won the 25 Under 25® Award

2016AwardsLookingDown_25U25

“Small businesses are a powerful, but often overlooked force in Kansas City,” said Kelly Scanlon, CEO of Thinking Bigger Business Media and the creator of 25 Under 25®.

“Together, these companies employ thousands upon thousands of people, deliver innovative products and services, and help support our government, schools, nonprofits and other public resources. Of course, most of our winners are too humble and too busy to brag about their contributions. But it’s a story that needs to be told. The 25 Under 25® Awards are proud to celebrate the important service of small businesses.”

 

About the 25 Under 25® Awards

As part of its 10-year anniversary celebration in 2002, Thinking Bigger Business Media Inc. launched the annual 25 Under 25® Awards to recognize 25 outstanding Kansas City businesses with under 25 employees.

Until the 25 Under 25® Awards, no formal recognition program existed in the Kansas City area that specifically targeted businesses with fewer than 25 employees. Yet this segment of business comprises the largest number of companies both locally and nationally, with roughly 83 percent of Kansas City area and 86 percent of businesses nationwide employing 19 or fewer employees.

With the establishment of the 25 Under 25® Awards program, small businesses are being recognized for the significant role they play in the Kansas City economy. The 25 Under 25® Awards program is not just about honoring individual businesses—it’s also about opening the public’s eyes to the economic, social and community impact of small businesses.

 

Honorees

December 7, 2016

Thinking Bigger Business Media is proud to announce the honorees of the 16th annual 25 Under 25® Awards—a group that represents the best of Kansas City’s small business community.

The awards are presented to 25 local businesses with fewer than 25 employees. An independent panel of judges consisting of area business leaders chooses the winning companies. Nearly 1,500 nominations were submitted. This year’s honorees include:

 

More info on the awards and the award reception here: https://ithinkbigger.com/events/25-under-25/

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)

Fax: 913-648-0131

Email: info@radpad.com

Follow RADPAD® on Facebook
Unknown

RAPDAD Scatter Radiation Shields Protection during Vascular Surgery

Posted on January 20, 2017 by in Products, Safety with no comments

RADPAD-scatter-radiation-protectio

When people go through vascular surgery, scatter radiation occurs. Scatter radiation was inevitable in the past. But with today’s new technology at our disposal, we can protect ourselves from scatter radiation and get results. The most prominent target for scatter radiation are the patients themselves and then the physicians who care for them. Let us look at the different ways we can avoid scatter radiation.

Interventional Peripheral Shields

Interventional Peripheral Shields are used during vascular surgery and cardiothoracic surgery. The shields provide the physician with added length that helps him work on the entire length. The shade is what comes handy and helps in avoiding scatter radiation. There are a lot of fluids used in this process and this is the reason why it is available in absorbent covering.

The shields provide excellent protection during AAA (Abdominal Aortic Aneurysm) and TAVR (Transcatheter Aortic Valve replacement) procedures. During these procedures the physician is required on both sides and thus the protection is also available on two sides.

Why do we need Protection from Scatter Radiation?

Is it inevitable? Why do we need protection against scatter radiation? The simple reason is that all radiation is harmful and there is more than one person present for a surgery. The nurses and the doctors along with the patient are potentially at risk. This is the reason why we need to have protection against scatter radiation.

And this is why RADPAD is inventing and manufacturing better shields that drastically reduce the radiation in every interventional procedure. It is available from 50% to 95% at 90kVp.

Some shields are designed specifically for absorbing radiation in certain zones. This helps in giving the physicians a place where they can safely work where the radiation won’t affect them at all.

Moreover, there are safety regulations for the doctors that state the radiation exposure to the doctors and other personnel should be as low as reasonably achievable (ALARA). This makes the use of RADPAD shields even more important in every operation theater.

So, now you know what kind of RADPAD shields can be used to protect a physician and their team from harmful scatter radiations. When everyone is protected, then surgeons can focus on what’s important; operating on their patients. Get these RADPAD shields for your company today.

TAVR-Radiation-Protection
One-Third of Patients With Low Flow Aortic Stenosis Do Not Improve With TAVR, Research Finds

One-Third of Patients With Low Flow Aortic Stenosis Do Not Improve With TAVR, Research Finds

Posted on October 27, 2016 by in Procedures with no comments

Aortic Stenosis, the narrowing of the aortic valve in the heart, causing restricted blood flow, is one of the most common and serious valve disease problems. A TAVR procedure is the best option for treating this disease, but recent studies have shown that approximately one-third of low flow AS patients continue to suffer with low flow AS after the procedure.

Read the full article on the Radpad blog below, or see the original publication here: http://www.cathlabdigest.com/content/One-Third-Patients-Low-Flow-Aortic-Stenosis-Do-Not-Improve-TAVR-Research-Finds

One-Third of Patients With Low Flow Aortic Stenosis Do Not Improve With TAVR, Research Finds

Patients who do not improve with TAVR are found to have worse clinical outcomes at one year

TAVR-Radiation-Protection

June 16, 2016 – Aortic stenosis (AS), the narrowing of the aortic valve in the heart which causes restricted blood flow, is one of the most common and serious valve disease problems. For patients with one type of AS — low flow — transcatheter aortic valve replacement (TAVR), a minimally invasive procedure which corrects the damaged aortic valve, is often the best option for restoring the heart’s normal pumping function. However, approximately one-third of low flow AS patients treated with TAVR continue to suffer persistent low flow AS even after the procedure, ultimately increasing their risk of death. Now, researchers from the Perelman School of Medicine at the University of Pennsylvania have examined this high-risk patient population to determine the cause of this persistent low flow AS and to evaluate their risk of dying during the year following the procedure. Their findings are detailed in a paper published in the Journal of the American Medical Association – Cardiology.

“There has been a lot of interest in these patients with low flow AS, as their surgical mortality is higher than other patients. TAVR is often a good option, but not all of them will be able to normalize flow following the procedure and these persistently low flow patients have a 60 percent higher rate of mortality at one year,” said Howard C. Herrmann, MD, FACC, MSCAI, John W. Bryfogle Professor of Cardiovascular Medicine and Surgery, and director of Penn Medicine’s Interventional Cardiology Program. “Low flow before TAVR is one of the most important predictors of mortality following TAVR, but it is one of the harder qualities to measure. This presents a challenge to properly treating patients with low flow AS, and can leave some patients at higher risk.”

To better understand the potential benefits of TAVR for low flow AS, researchers conducted an analysis of 984 patients with low flow AS from the PARTNER trial and continued access registry from April 2014 through January 2016. A baseline and follow-up echocardiogram, evaluation of post-TAVR hemodynamics — blood flow — and one year outcomes were assessed.

Through this analysis, researchers identified the large subgroup of patients who, following TAVR, failed to regain normal flow despite a successful procedure. In the first six months following TAVR, flow improved in roughly 66 percent of the patients evaluated. However, those with severe low flow AS had the highest mortality rate — 26 percent — at one year, as compared to approximately 20 percent for those with moderate low flow and even less for those with normal flow.

“Unfortunately, many centers do not routinely measure flow, but rather focus more on a patient’s pressure gradient or valve area when evaluating aortic stenosis pre-and post-TAVR,” said Herrmann. “While low flow is more challenging to monitor, this measurement can better inform the patient’s risk of mortality, and in turn lead to better treatment.”

The researchers noted that the identification of remedial, or treatable, causes of persistent low flow following TAVR, such as severe mitral regurgitation and atrial fibrillation, may represent an opportunity to improve the outcomes of these patients.

Journal Reference:

  1. Venkatesh Y. Anjan, MD; Howard C. Herrmann, MD; Philippe Pibarot, PhD; William J. Stewart, MD; Samir Kapadia, MD; E. Murat Tuzcu, MD; Vasilis Babaliaros, MD; Vinod H. Thourani, MD; Wilson Y. Szeto, MD; Joseph E. Bavaria, MD; Susheel Kodali, MD; Rebecca T. Hahn, MD; Mathew Williams, MD; D. Craig Miller, MD; Pamela S. Douglas, MD; Martin B. Leon, MD. Evaluation of Flow After Transcatheter Aortic Valve Replacement in Patients With Low-Flow Aortic Stenosis: A Secondary Analysis of the PARTNER Randomized Clinical Trial. Journal of the American Medical Association — Cardiology, June 2016 DOI: 10.1001/jamacardio.2016.0759
Mounting Evidence That Cath Lab Work Has Radiation-Related Health Effects

Mounting Evidence That Cath Lab Work Has Radiation-Related Health Effects

Posted on September 2, 2016 by in Safety with no comments

A research study was conducted in which 466 scatter radiation exposed hospital staff members were evaluated based on work-related and lifestyle information, current medications and health status. These staff members included interventional cardiologists, electrophysiologists, nurses and technicians, half of which had been working for over ten years. The results of this study concluded almost 3% of the interventional cardiology staff had a history with cancer, compared to less than 1% of unexposed comparison group. Along with that, 8% of lab workers experienced skin lesions, 30% had orthopedic illness and 5% had cataracts. These issues have all been associated with scatter radiation exposure.

McKeown, LA. “Survey Adds to Mounting Evidence That Cath Lab Work Has Radiation-Related Health Effects.”tctmd: Cardiovascular Research Foundation, 13 Apr. 2016. Web. 26 May 2016

See the original article here: http://www.tctmd.com/show.aspx?id=134783

Read the full text below:

 

Survey Adds To Mounting Evidence That Cath Lab Work Has Radiation-Related Health Effects

By L.A. McKeown
Wednesday, April 13, 2016

 

Interventional cardiologists and other personnel who work in environments with fluoroscopy-guided procedures appear to have more health problems than their colleagues in the same field who are not exposed to radiation, a survey suggests. The health problems range from eye, skin, and orthopedic problems to mental health issues, and cancers.

Another View. Survey Adds To Mounting Evidence That Cath Lab Work Has Radiation-Related Health Effects

Researchers led by Maria Grazia Andreassi, MSc, PhD (CNR Institute of Clinical Physiology, Pisa, Italy), say “every effort should be made to raise the radiation awareness in the professional communities of interventional cardiologists and cardiac electrophysiologists, promoting justification of the examination, optimization of the dose, and maximal protection of the radiation workers.”

They surveyed 466 physicians and other staff members with an average of 10 years of experience working in interventional cardiology or electrophysiology laboratories as well as 280 individuals working in the cardiology field but having no exposure, including physicians, researchers, nurses, and administrative staff. All completed a questionnaire about their present and past medical history, medication use, duration of work, and frequency of cigarette and alcohol use. An occupational radiological risk score, which combined length of employment, individual caseload, and proximity to the radiation source, was formulated for each participant.

Physical, Psychological Differences Evident

Reporting their results online April 12, 2016, ahead of publication in Circulation: Cardiovascular Interventions, Andreassi and colleagues found that not only were potential radiation-related health issues such as skin lesions, orthopedic problems (back, neck, knee), cataracts, and cancers more prevalent in radiation-exposed vs unexposed workers, they were also more common among physicians vs technicians and nurses, and among those with longer vs shorter work histories. Across every disease category, those with 16 or more years of working in an environment with fluoroscopy-guided procedures had the highest event rates.

The prevalence of anxiety/depression was also increased among the radiation-exposed group—at a rate 6 times higher than unexposed colleagues, while the rate of thyroid disease was doubled. Radiation-exposed workers also had greater rates of hypertension and hypercholesterolemia, but not of cardiovascular events.

Rates of health problems in the radiation-exposed versus unexposed groups were confirmed in multiple logistic regression analysis.

Table. Survey Adds To Mounting Evidence That Cath Lab Work Has Radiation-Related Health Effects

“Unfortunately, cardiologists pay little heed to monthly or cumulative reports of radiation exposure. And recent studies confirm that simple, effective protection measures—such as a lead curtain, protection glasses and thyroid collars—are not used by the majority of exposed cardiologists,” Andreassi said in a press release.

Exposure-Related Associations Abound

Among the health problems reported in the survey and previously described in the literature, radiation-induced cancer is “the most alarming and serious” of the long-term occupational risks for interventional cardiologists, the study authors write. Concerns of brain cancer on the left side of the head, which is known to be more exposed to radiation and least protected by standard shielding, have been apparent in the literature as far back as 1998, they note.

“Although the evidence supporting an increase in radiation-induced cancer among interventional cardiologists remains inconclusive, molecular studies showed that interventional cardiologists have a two-fold increase of chromosomal damage (surrogate biomarkers of cancer risk) in circulating lymphocytes than clinical cardiologists,” Andreassi and colleagues write. Recently, findings from the International Nuclear Workers cohort showed strong evidence of positive associations between protracted low-dose radiation exposure and leukemia.

Interestingly, Andreassi and colleagues point out that radiation-related increases in hypertension and elevated serum cholesterol concentrations have also been seen in atomic-bomb survivors, more than half of whom were exposed to an average dose of < 50 mSv. In the press release, Andreassi notes that experienced, busy interventional cardiologists and electrophysiologists typically are exposed to about 5 mSv yearly. In a study published last year, her group also found that cath lab workers showed early signs of vascular aging and subclinical atherosclerosis. They suggest that chronic low-dose rate radiation “triggers changes in the endothelial cell biology that induce the onset of premature senescence, and these alterations may in part be responsible for the increased risk of chronic low-dose radiation–associated cardiovascular disease.”

As for the higher incidence of anxiety and depression in the radiation workers, Andreassi and colleagues hypothesize that this may be related to “high stress and psychological strain,” or a direct effect of radiation exposure to the head of the operator, resulting in “hippocampal neurogenesis and neuronal plasticity, with possible negative effects on mood stability and psychiatric morbidity.”

Stress a Likelier Culprit

Commenting for TCTMD, Stephen Balter, PhD, of Columbia University Medical Center (New York, NY), said the biggest flaw with the study is that everything was assumed to stem from radiation.

“It’s a high-stress job and I’m not surprised that there are health risks associated with doing the job, but these things are unlikely to be associated with radiation per se,” Balter said. “I think people trying to do the best they can are stressed out, and that’s reflected in their mental state and in their chemistry.”

Other than cataracts, which have a long, documented history in operators and others routinely exposed to occupational radiation, the other health issues such as cancers have not been substantiated in the literature as related to exposure, he added.

“The message is you have to be careful, but there’s no reason for panic,” Balter commented, adding that enforcing the wearing of radiation protection glasses and other gear among cath lab workers remains a challenge.

Profit Over People

Even though the current study is limited, there is “more than enough information for us to conclude that the interventional catheterization laboratory is not a healthy workplace,” observe Lloyd W. Klein, MD and Mugurel Bazavan, MD (Rush Medical College, Chicago, IL), in an accompanying editorial.

Despite the known risks to operators, the technology used in cath labs has outpaced safety-related changes in cath lab design and personnel protection, they say, primarily due to a profit mentality on the part of administrators that values talented, young, and inexpensive workers who can be readily replaced.

“Certainly, investing money in an innovative cath laboratory design to protect its workers is hardly cost-effective when nurturing a long career is not the goal of management,” Klein and Bazavan write. “We call on industry and hospital administration to provide responsible stewardship, and for physician societies and interventional leaders to advocate visibly and set new priorities, so that those of us who choose to help patients live a longer and healthier life can ourselves enjoy a long and healthy career, one that allows us to use all the magnificent and cherished skills we have dedicated years to master.”


Sources:

  • Andreassi MG, Piccaluga E, Guagliumi G, et al. Occupational health risks in cardiac catheterization laboratory workers. Circ Cardiovasc Interv. 2016;Epub ahead of print.
  • Klein LW, Bazavan M. The economic imperatives underlying the occupational health hazards of the cardiac catheterization laboratory. Circ Cardiovasc Interv. 2016;Epub ahead of print.

Disclosures:

  • Andreassi, Klein, and Bazavan report no relevant conflicts of interest.
  • Balter reports serving on the speakers’ bureau for Mavig, a manufacturer of radiation-protection supplies.

 

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Follow RADPAD® on Facebook
Unknown

 

SCAI: Women Undergoing TAVR Have a Different Risk Profile and Greater Survival Rate Than Men

SCAI: Women Undergoing TAVR Have a Different Risk Profile and Greater Survival Rate Than Men

Posted on August 23, 2016 by in Other Stories with no comments

 

image

Although women are more likely to experience vascular complications in the hospital, their one-year survival rate is more favorable than men. 11,808 women and 11,884 men were evaluated over two years and the one-year mortality rate was lower in women, although the in-hospital survival rate was about the same.

Read the full article below, or click the link to see the original posting:

http://www.cathlabdigest.com/content/SCAI-Women-Undergoing-TAVR-Have-Different-Risk-Profile-Greater-Survival-Rate-Men

SCAI: Women Undergoing TAVR Have a Different Risk Profile and Greater Survival Rate Than Men

May 6, 2016 — Orlando, Fla. – Data from one of the largest national registries of transcatheter aortic valve replacement (TAVR) patients shows that although women are more likely to experience vascular complications in the hospital, their one-year survival rate is more favorable than men. This STS/ACC TVT Registry™ analysis was presented today as a late-breaking clinical trial at the Society for Cardiovascular Angiography and Interventions (SCAI) 2016 Scientific Sessions in Orlando, Fla.

Investigators evaluated in-hospital and one-year outcomes for 23,652 TAVR patients, including 11,808 women (49.9 percent) and 11,844 men (51.1 percent), from 2012-2014. Compared to men, women were older, with lower GFR (kidney function) but higher prevalence of porcelain aorta and a higher mean STS adult cardiac surgery risk score (9 percent vs. 8 percent). However, women undergoing TAVR had a lower prevalence of comorbidities, such as coronary artery disease, atrial fibrillation and diabetes.

“Prior to this study, smaller analyses have suggested that men and women have different outcomes following TAVR procedures,” said Jaya Chandrasekhar, MBBS, MRCP, FRACP, a post-doctoral research fellow with Roxana Mehran, MD, FACC, FAHA, FSCAI, at the Icahn School of Medicine at Mount Sinai and the primary author of this report. “We wanted to gain in-depth understanding into the differences between men and women undergoing TAVR procedures from the US national registry and to evaluate the discrepancies by sex in longer-term outcomes.”

The study demonstrated that women were treated more often using non-transfemoral access (45 percent vs. 34 percent) with smaller sheath and device sizes but had a higher valve cover index than men. Post-procedure, women experienced more in-hospital vascular complications than men (8.27 percent vs. 4.39 percent, adj HR 1.70, 95 percent CI 1.34 – 2.14, P < 0.001) along with a trend for more bleeding (8.0 percent vs. 5.96 percent, adj HR 1.19, 95 percent CI 0.98 – 1.44, P = 0.08).

Despite these complications for women, the in-hospital survival rate was the same as men. Additionally, one-year mortality was lower in women (21.3 percent) than in men (24.5 percent).

“These findings are promising for women,” said Dr. Chandrasekhar. “There is a suggestion that the lower rate of coronary artery disease in women undergoing TAVR does put them at an advantage for longer-term survival, compared to men. The next step should be to study quality of life metrics and outcomes beyond one year including causes for death in both men and women. At the same time, frailty should be better defined to allow appropriate selection of patients for this procedure.”

Dr. Chandrasekhar reports no disclosures.

Dr. Chandrasekhar presented “Sex Based Differences in Outcomes With Transcatheter Aortic Valve Therapy: From STS/ACC TVT Registry” on Friday, May 6, 2016, at 9:00 a.m. ET.

For more information about the SCAI 2016 Scientific Sessions, visit www.scai.org/SCAI2016.

###

About SCAI
The Society for Cardiovascular Angiography and Interventions is a 4,500-member professional organization representing invasive and interventional cardiologists in approximately 70 nations. SCAI’s mission is to promote excellence in invasive/interventional cardiovascular medicine through physician education and representation, and advancement of quality standards to enhance patient care. SCAI’s public education program, Seconds Count, offers comprehensive information about cardiovascular disease.

 

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Follow RADPAD® on Facebook
Unknown

 

Protecting the Provider:  A Reexamination of Cath Lab Radiation Safety

Protecting the Provider: A Reexamination of Cath Lab Radiation Safety

Posted on July 22, 2016 by in Safety with no comments

Protecting the Health of Cath Lab Technicians

Unlike patients who are only exposed to ionized radiation during their procedure, cath lab technicians are exposed during every procedure they perform. This article discusses health effects associated with radiation exposure in the cath lab along with ways to protect the health of those technicians. Two of those ways are wearing a lead-based shield, and keeping a distance between the operator and the radiation source.

Wohns, David, and Ryan Madder. “Protecting the Provider: A Reexamination of Cath Lab Radiation Safety.” Cath Lab Digest. HMP Communications, Feb. 2015. Web. 26 May 2016.

Read the article in full below, or click the link to see the originally published article at Cath Lab Digest:

http://www.cathlabdigest.com/article/Protecting-Provider-Reexamination-Cath-Lab-Radiation-Safety

 


 

Protecting the Provider: A Reexamination of Cath Lab Radiation Safety

Author(s):

David Wohns, MD, Medical Director, and Ryan Madder, MD, 

Kresge Cardiac Cath Labs, Frederik Meijer Heart & Vascular Institute, 

Spectrum Health, Grand Rapids, Michigan

Topics:
Radiation
Safety
Robotic PCI

In the delivery of high-quality healthcare, patient safety is always a major concern of providers and the public. The safety of healthcare workers frequently receives significantly less attention. Recent events have highlighted this issue and are altering this perspective, with greater recognition of the sacrifices and risks that healthcare workers routinely take to perform their jobs. Patient safety remains the number-one concern of healthcare providers. However, the health and safety of providers should receive equal attention, particularly when novel techniques and strategies can be adopted to mitigate provider risk.

During 2014, the Ebola patients treated within U.S. borders caught the attention of the mainstream media and the public. Besides the public’s general concern for the patients, much attention was devoted to the healthcare workers who were exposed to the virus while caring for Ebola patients. These events raised the public’s awareness of healthcare worker safety and also caused many people to ask: “How do we ensure the safety of healthcare providers who put themselves in harm’s way to look after their patients’ health?

Madder

This increased awareness is especially relevant to interventional cardiologists. Unlike patients, who are only exposed to ionizing radiation during their procedure, interventional cardiologists and other members of the cath lab team are repeatedly exposed to ionizing radiation, subjecting them to potentially serious long-term health issues. Additionally, the physical demands of performing their jobs while wearing heavy protective gear can lead to chronic orthopedic conditions that may prematurely end careers or force change into other fields of medicine.

Wohns

With the increased interest in healthcare worker safety, it is an appropriate time to explore the risks associated with cath lab environments and novel technological solutions available to improve safety.

Assessing cath lab risks

Medical procedures performed in the cath lab are a leading source of occupational ionizing radiation exposure for medical personnel1, due to the use of fluoroscopy and cine angiography during these procedures. This occupational radiation exposure is of particular concern because today’s interventional cardiologists are spending significantly greater time in the cath lab doing more complex and lengthy procedures. Further, the performance of percutaneous coronary intervention (PCI) procedures in cath labs has increased more than 50 percent since 20002, potentially exposing interventional cardiologists to additional radiation.

Although research studies have demonstrated substantial variations in the amount of ionizing radiation to which interventional cardiologists are exposed, a look at the literature reveals the following:

  • One study showed that an interventional cardiologist’s head and neck area are generally exposed to approximately 20 to 30 millisieverts (mSv) per year3, which equates to 2 to 3 rems per year.
  • Another demonstrated that cumulative doses for the average interventional cardiologist after 30 years in the cath lab fall between 50 to 200 mSv, equivalent to 5 to 20 rems, or 2,500 to 10,000 chest x-rays.4
  • A third shows that interventionalists receive approximately 1 to 3 sieverts (Sv) to their head during their career (equivalent to 1,000 to 3,000 mSv, or 100 to 300 rems), which corresponds to about 500mSv to the brain5 (equivalent to 50 rems).
  • A separate study showed that interventional cardiologists have a radiation exposure rate documented to be two to ten times higher than that of diagnostic radiologists.4

 

Adverse health effects

Despite the availability and use of personal protective equipment (PPE), such as lead aprons, leaded glasses and thyroid collars, there are significant radiation exposure risks that have the potential to negatively impact the health of interventional cardiologists and their staff. Below are some findings from recent scientific literature:

  • Cataracts: The Occupational Cataracts and Lens Opacities in Interventional Cardiology (O’CLOC) study revealed that 50 percent of interventional cardiologists and 41 percent of cardiac cath nurses and technologists had significant posterior subcapsular lens changes, a precursor to cataracts, which is typical of ionizing radiation exposure.6
  • Thyroid disease: Studies have reported structural and functional changes of the thyroid as a result of radiation exposure.7 Structural changes such as malignant and benign thyroid tumors develop at a linear rate to dose exposure. Functional changes that would result in hyper- or hypo-thyroidism were noted at elevated doses of external and internal radiation exposure.7
  • Brain tumors and brain disease: A recent study focused on interventionalists who had been diagnosed with a variety of brain tumors. The study revealed that 86% of the brain tumors (where location is known) originated on the left side of the brain.8 This is significant, since interventional cardiologists typically stand with the left side of their body closest to the X-ray source and scattered radiation. In the general population, brain tumors originate with equal frequency on the left and right hemispheres.
  • Cardiovascular changes: Recent studies suggest evidence of a link between low- to moderate-dose radiation exposure and cardiovascular changes, despite personal protective wear.5
  • Reproductive health effects: For males, ionizing radiation has demonstrated a reduction in sperm.9 Additionally, cath lab staff members who may become pregnant while working in the cath lab must also take into consideration the effects that ionizing radiation can have on the developing fetus.

Additionally, there are orthopedic-related consequences from the heavy weight of lead gear worn by interventional cardiologists. The repeated standing and leaning over patients during procedures is fatiguing and commonly leads to chronic orthopedic conditions. A 2006 survey conducted by the Society for Cardiovascular Angiography and Interventions (SCAI) disclosed that interventional cardiologists suffer from a disproportionate amount of back, hip, and knee injuries leading to a significant amount of missed workdays.10 The weight of the personal protective gear is fatiguing, and a physician who is fatigued or experiencing discomfort may be more likely to be distracted or rush through a procedure.

Protecting the health of cath lab employees

There are two traditional techniques used to reduce radiation exposure. One is lead-based shielding, and the second is increasing the distance between the operator and the radiation source.

A relatively new approach to shielding includes devices that support lead aprons that hang from a boom, rather than being worn by clinicians. These hanging aprons provide effective radiation protection with a greater quantity of lead than is traditionally worn by operators. Since the operator is not physically supporting the lead, these devices have the potential to reduce orthopedic injuries and reduce overall operator fatigue.

The advent of robot-assisted percutaneous coronary intervention (PCI) represents another novel approach to reducing radiation exposure to operators. Robotic systems for PCI allow interventional cardiologists to perform procedures remotely, away from the patient’s bedside. Seated in a radiation-protected cockpit, the physician uses digital controls to robotically manage catheters, guide wires, angioplasty balloons, and stents to clear blockages and restore blood flow. These technologies are beneficial in reducing exposure by positioning operators further from the radiation source, but also have the potential to mitigate the impact that wearing PPE has on operators, such as orthopedic pain, missed work and disability.

The robotic-assisted PCI system being used at Spectrum Health is called CorPath (Corindus Vascular Robotics). The CorPath System allows physicians to perform PCI procedures from the comfort of a radiation-shielded cockpit that includes angiographic and hemodynamic monitors. Physicians using the system are able to take measurements, with sub-millimeter accuracy, of relevant anatomy, as well as advance or retract guide wires and/or balloon stent catheters with movements as small as a millimeter. A clinical trial has shown that using the robotic system reduced radiation exposure to the primary operator by more than 95 percent.11

Elevating healthcare worker safety

Interventional cardiology is a uniquely rewarding, highly innovative profession. The bulk of the innovation in our field over the past 3 decades has appropriately been focused on patient care. However, the manner and circumstances with which that care has been delivered in the cath lab has changed little over time. New approaches are now available to begin to mitigate the biomechanical, orthopedic, and radiation risks of working in the cath lab. The CorPath System is an example of a device with tremendous promise to reduce these hazards for interventional cardiologists, contributing to longer, healthier careers. We have been excited to bring this innovative technology to our cath labs as part of the evolution of our environment.

References

  1. Sun Z, AbAziz A, Yusof AK. Radiation-induced noncancer risks in interventional cardiology: optimisation of procedures and staff and patient dose reduction. Biomed Res Int. 2013; 2013: 976962. doi: 10.1155/2013/976962.
  2. Best PJ, Skelding KA, Mehran R, Chieffo A, Kunadian V, Madan M, et al; Society for Cardiovascular Angiography & Interventions’ Women in Innovations (WIN) Group. SCAI consensus document on occupational radiation exposure to the pregnant cardiologist and technical personnel. Catheter Cardiovasc Interv. 2011 Feb 1; 77(2): 232-241. doi: 10.1002/ccd.22877.
  3. L Renaud. A 5-y follow-up of the radiation exposure to in-room personnel during cardiac catheterization. Health Phys. 1992 Jan; 62(1): 10-15.
  4. Picano E, Andreassi MG, Piccaluga E, Cremonesi A, Guagliumi G. Occupational risks of chronic low dose radiation exposure in cardiac catheterisation laboratory: the Italian Healthy Cath Lab study. EMJ Int Cardiol. 2013; 1: 50-58.
  5. Picano E, Vano E, Domenici L, Bottai M, Thierry-Chef I. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure. BMC Cancer. 2012 Apr 27; 12: 157. doi: 10.1186/1471-2407-12-157.
  6. Vano E, Kleiman NJ, Duran A, Romano-Miller M, Rehani MM. Radiation-associated lens opacities in catheterization personnel: results of a survey and direct assessments. J Vasc Interv Radiol. 2013 Feb; 24(2): 197-204. doi: 10.1016/j.jvir.2012.10.016.
  7. Ron E, Brenner A. Non-malignant thyroid diseases after a wide range of radiation exposures.Radiat Res. 2010 Dec; 174(6): 877-888. doi: 10.1667/RR1953.1.
  8. Roguin A, Goldstein J, Bar O, Goldstein JA.  Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013 May 1; 111(9): 1368-1372. doi: 10.1016/j.amjcard.2012.12.060.
  9. Burdorf A, Figà-Talamanca I, Jensen TK, Thulstrup AM. Effects of occupational exposure on the reproductive system: core evidence and practical implications. Occup Med (Lond). 2006 Dec; 56(8): 516-520.
  10. Dehmer GJ. Occupational hazards for interventional cardiologists. Catheter Cardiovasc Interv. 2006 Dec; 68(6): 974-976.
  11. Weisz G, Metzger DC, Caputo RP, Delgado JA, Marshall JJ, Vetrovec GW, et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study. J Am Coll Cardiol. 2013 Apr 16; 61(15): 1596-1600. doi: 10.1016/j.jacc.2012.12.045.

Disclosure: Dr. Wohns and Dr. Madder report no conflicts of interest regarding the content herein.

The authors can be contacted via David.Wohns@spectrumhealth.org.

WORLDWIDE INNOVATIONS & TECHNOLOGIES, INC. (WIT)
14740 W 101st Terrace
Lenexa, KS 66215
Phone: 913-648-3730
or 1-877-7RADPAD (1-877-772-3723)
Fax: 913-648-0131
Follow RADPAD® on Facebook
Unknown

The Physical Stress of Working in a Cath Lab

Posted on July 16, 2016 by in Safety with no comments

Heavy Lead Aprons Causing Pain for Cath Lab Professionals

A survey was published in March of 2015 exhibiting musculoskeletal pain caused by work-related stress due to lead aprons. In order to protect from scatter radiation, cath lab professionals are required to wear heavy lead aprons. A survey was emailed to 2,682 cardiology and radiology employees at 6 Mayo Clinic facilities in the U.S. and received responses from 57%. Of these responses, 62% of techs, 60% of nurses, 44% of attending physicians and 19% of trainees reported work-related pain. Dr. Singh recommends that these employees be rotated out of the cath lab suites more frequently to reduce stress. Additionally, he recommends lighter-weight or non-lead-based protective wear.

Dalton, Kim. “Survey Puts Spotlight on Physical Stress of Working in a Cath Lab.” Tctmd: Cardiovascular Research Foundation, 23 Feb. 2015. Web. 26 May 2016.

Read the full article below, or click the link to read the original article:

http://www.tctmd.com/show.aspx?id=128052

 


 

Survey Puts Spotlight on Physical Stress of Working in a Cath Lab

By Kim Dalton
Monday, February 23, 2015

Cath lab personnel who spend long hours wearing heavy lead aprons to protect against radiation exposure are more likely to experience musculoskeletal problems than colleagues who work in other hospital settings, according to the results of a survey published in the March 3, 2015, issue of the Journal of the American College of Cardiology. Cath lab staffers did not report more radiation-related cataracts and cancers, although the low prevalence of such conditions and the study’s cross-sectional design may have hampered its ability to detect a difference.

According to an accompanying editorial by James A. Goldstein, MD, of the Beaumont Health System (Royal Oak, MI), years of such physical stress can result in “missed days of work, surgery, and, in some cases, curtailed careers.”

Cath-Lab--Lightweight-Aprons

Investigators led by Mandeep Singh, MD, of the Mayo Clinic (Rochester, MN), emailed surveys to 2,682 cardiology and radiology department employees at 6 Mayo Clinic facilities across the country and received responses from 57% (n = 554 in cardiology and 989 in radiology; average age 43 years; 33% male). Respondents were divided into cath lab workers (n = 1,042) and controls (n = 499) based on whether they reported being engaged in procedures involving radiation.

The most common occupations of respondents were:

  • Technician/technologist: 54.3% (mean 15.5 years in position)
  • Registered nurse: 18.3% (mean 16.1 years)
  • Physician: 13.4% (mean 18.8 years)
  • Other: 9.3% (mean 11.3 years)
  • Resident/fellow: 4.7% (mean 4.0 years)

Clinical employees with exposure to procedures involving radiation that required wearing a lead apron were more likely to have experienced work-related pain and to have sought medical care for it than the control group. In addition, they were more likely to report pain at the time of the survey (table 1).

Table 1. Work-Related Pain by Job

However, there was no difference between the groups in objective assessment scores for current pain, recent use of pain medication, missed workdays, or use of disability.

The association between work-related pain and lead apron wearing remained after adjustment for age, sex, body mass index, preexisting musculoskeletal conditions, years in the profession, and job description (adjusted OR 1.67; 95% CI 1.32-2.11).

Cath lab employees who reported a history of work-related pain were more likely to be female, spent more time each week exposed to radiation, and wore a lead apron more often than controls (all P < .001). Tactics aimed at reducing musculoskeletal pain were also more common in those who reported work-related pain and included:

  • Prompt removal of the lead apron after procedures
  • Stretching/exercising before or after procedures
  • Wearing soft-soled shoes

There was no relationship between risk of injury and the type of lead apron worn (1 piece vs 2 pieces) or use of a glass shield or eye protection.

The likelihood of experiencing work-related pain varied by job description, with the highest incidence reported by techs (62%) and nurses (60%), followed by attending physicians (44%) and trainees (19%; P for trend < .001). Although techs and nurses were more likely than attending physicians to be female, the findings were similar when the analysis was restricted to men or women.

Cath lab workers exposed to radiation did not report more cancers, cataracts, hypothyroidism, or nephrolithiasis than employees not so exposed and showed no difference in rates of a composite endpoint including these conditions and musculoskeletal pain (P = .26).

Focus on Relieving Physical Stress

According to the authors, this is the first study to show that techs and nurses have a higher prevalence of work-related musculoskeletal pain than attending physicians despite being younger and having fewer years in the cath lab.

One reason for the discrepancy may be that physicians regularly rotate out of the cath lab while nurses and tech personnel do not, they suggest. Another possible contributor is that staff perform physically stressful tasks, like transferring patients on and off the table and applying compression after sheath removal.

According to Dr. Singh and colleagues, ongoing efforts should be made to provide regular ergonomic evaluations, periodic rotations out of the cath lab suite, and lighter-weight, non–lead-based protective wear. In addition, they say, robotic interventional equipment and remote monitoring technologies may help reduce both the number of personnel needed to care for the patient and their proximity to the radiation source, thereby diminishing the time spent wearing a lead apron.

The researchers acknowledge that these data cannot resolve questions about cancer risk from radiation exposure, in part because the incidence of the disease in younger cath lab personnel is low. Moreover, staffers diagnosed with cancer may transfer to a job that does not expose them to radiation or retire, and thus their cases would not be captured in this cross-sectional survey.

In the editorial, Dr. Goldstein calls the findings “alarming and sobering.” But, he adds, given the growth in the volume, complexity, and length of interventional procedures, the “escalating epidemic of occupational-induced orthopedic afflictions” should not be surprising.

Dr. Goldstein observes that innovative equipment that facilitate quality imaging with lower doses is helping to minimize radiation exposure, and measures like ceiling-suspended lead aprons, shielded gloves and scrub caps for cranial protection, and vascular robotic technology can help reduce orthopedic problems.

‘Take Care of Yourself’

But in a telephone interview with TCTMD, Craig St. George, RT, director of online education for the American Society of Radiologic Technologists (Albuquerque, NM), said that  over 6 years working at the Mayo Clinic in Jacksonville, FL, he cannot recall anyone complaining of a work-related injury.

However, he noted, many of his colleagues exercised, stretched, and practiced yoga, which likely helped counter the stress of wearing a lead apron day after day. Another important factor in minimizing aches and pains, he suggested, was that each person was custom-fitted for an apron. And they could choose from different versions, including a wraparound model with a waist belt that took much of the weight off the shoulders. They also stood on ergonomic pads near the table to help cushion their feet during long hours. In addition, the strain of transferring patients to and from the table was mitigated by working in teams.

As for any radiation concerns, Mr. St. George said he relied on his training—making sure he was properly shielded and standing in the right place to minimize exposure—and oversight by the hospital’s radiation safety officer.

“I know people who have been technologists for 20 or 30 years, and I’ve never heard anyone say, ‘This is really wearing on me,’ he commented, adding, “You go into the profession because you want to take care of patients, and to do that you have to take care of yourself.”


Sources:
1. Orme NM, Rihal CS, Gulati R, et al. Occupational health hazards of working in the interventional laboratory: a multisite case control study of physicians and allied staff. J Am Coll Cardiol. 2015;65:820-826.
2. Goldstein JA. Orthopedic afflictions in the interventional laboratory: tales from the working wounded [editorial]. J Am Coll Cardiol. 2015;65:827-829.

Disclosures:

  • Dr. Singh reports no relevant conflicts of interest.
  • Dr. Goldstein reports owning equity in a company developing radiation shielding equipment.
  • Mr. St. George reports no relevant conflicts of interest.